An archived dataset from the ECMWF Ensemble Prediction System for probabilistic solar power forecasting

概率逻辑 概率预测 气象学 集合预报 计算机科学 环境科学 机器学习 人工智能 地理
作者
Wenting Wang,Di Yang,Tao Hong,Jan Kleissl
出处
期刊:Solar Energy [Elsevier BV]
卷期号:248: 64-75 被引量:18
标识
DOI:10.1016/j.solener.2022.10.062
摘要

Ensemble numerical weather prediction (NWP) is the backbone of the state-of-the-art solar forecasting for horizons ranging between a few hours and a few days. Dynamical ensemble forecasts are generated by perturbing the initial condition, and thereby obtaining a set of equally likely trajectories of the future weather. Generating dynamical ensemble forecasts demands extensive knowledge of atmospheric science and significant computational resources. Hence, the task is often performed by international and national weather centers and space agencies. Solar forecasters, on the other hand, are primarily interested in post-processing those ensemble forecasts disseminated by weather service providers, as to arrive at forecasts of solar power output. To facilitate the uptake of ensemble NWP forecasts in solar power forecasting research, this paper offers an archived dataset from the European Centre for Medium-Range Weather Forecasts (ECMWF) Ensemble Prediction System, over a four-year period (2017–2020) and over an extensive geographical region (e.g., most of Europe and North America), under the Creative Commons Attribution 4.0 International (CC BY 4.0) license. Two case studies are presented to demonstrate the usage of the dataset. One case study elaborates how ensemble forecasts can be summarized and calibrated, which constitute two common forms of probabilistic forecast post-processing. The other demonstrates how the dataset can be used in solar power forecasting applications, which compares machine learning with the physical model chain in terms of their irradiance-to-power conversion capability. The Python code used to produce the results shown in this paper is made available on GitHub.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
852应助颠颠的哦采纳,获得10
刚刚
kk完成签到,获得积分10
1秒前
qnmlgbd55完成签到,获得积分10
1秒前
2秒前
丫头完成签到,获得积分20
2秒前
方梦坤完成签到,获得积分10
2秒前
3秒前
小明发布了新的文献求助10
3秒前
wdasdas发布了新的文献求助10
4秒前
上官若男应助liwenhao采纳,获得10
4秒前
powell应助斯文奇迹采纳,获得10
5秒前
5秒前
zfp完成签到,获得积分10
6秒前
寒冷依秋发布了新的文献求助10
7秒前
Wells完成签到,获得积分10
7秒前
科研通AI6应助123采纳,获得10
7秒前
兔子应助zhenpeng8888采纳,获得10
8秒前
脑洞疼应助陶军辉采纳,获得10
8秒前
Evelyn应助方梦坤采纳,获得10
8秒前
无敌发布了新的文献求助10
8秒前
快乐难敌发布了新的文献求助10
9秒前
在水一方应助su采纳,获得10
9秒前
标致的问晴完成签到,获得积分10
9秒前
eee完成签到 ,获得积分10
9秒前
9秒前
NorthWang完成签到,获得积分10
10秒前
乐乐应助小程同学采纳,获得10
11秒前
张婧媛完成签到,获得积分10
11秒前
12秒前
哈罗发布了新的文献求助10
12秒前
zzzzzz关注了科研通微信公众号
13秒前
Hello应助李十一采纳,获得10
13秒前
领导范儿应助xy采纳,获得10
13秒前
陈惠琳完成签到,获得积分10
13秒前
13秒前
kai9712完成签到,获得积分10
13秒前
小明完成签到,获得积分10
14秒前
酒吧舞男茜茜妈完成签到,获得积分10
14秒前
14秒前
缓慢花瓣发布了新的文献求助10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Vertebrate Palaeontology, 5th Edition 500
Narrative Method and Narrative form in Masaccio's Tribute Money 500
Aircraft Engine Design, Third Edition 500
Neonatal and Pediatric ECMO Simulation Scenarios 500
苏州地下水中新污染物及其转化产物的非靶向筛查 500
Rapid Review of Electrodiagnostic and Neuromuscular Medicine: A Must-Have Reference for Neurologists and Physiatrists 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4758849
求助须知:如何正确求助?哪些是违规求助? 4100571
关于积分的说明 12688058
捐赠科研通 3815451
什么是DOI,文献DOI怎么找? 2106365
邀请新用户注册赠送积分活动 1131056
关于科研通互助平台的介绍 1009404