Orthogonal latent space learning with feature weighting and graph learning for multimodal Alzheimer’s disease diagnosis

判别式 人工智能 计算机科学 特征向量 特征学习 加权 图形 模式识别(心理学) 机器学习 概率潜在语义分析 理论计算机科学 医学 放射科
作者
Zhi Chen,Yongguo Liu,Yun Zhang,Qiaoqin Li
出处
期刊:Medical Image Analysis [Elsevier BV]
卷期号:84: 102698-102698 被引量:25
标识
DOI:10.1016/j.media.2022.102698
摘要

Recent studies have shown that multimodal neuroimaging data provide complementary information of the brain and latent space-based methods have achieved promising results in fusing multimodal data for Alzheimer's disease (AD) diagnosis. However, most existing methods treat all features equally and adopt nonorthogonal projections to learn the latent space, which cannot retain enough discriminative information in the latent space. Besides, they usually preserve the relationships among subjects in the latent space based on the similarity graph constructed on original features for performance boosting. However, the noises and redundant features significantly corrupt the graph. To address these limitations, we propose an Orthogonal Latent space learning with Feature weighting and Graph learning (OLFG) model for multimodal AD diagnosis. Specifically, we map multiple modalities into a common latent space by orthogonal constrained projection to capture the discriminative information for AD diagnosis. Then, a feature weighting matrix is utilized to sort the importance of features in AD diagnosis adaptively. Besides, we devise a regularization term with learned graph to preserve the local structure of the data in the latent space and integrate the graph construction into the learning processing for accurately encoding the relationships among samples. Instead of constructing a similarity graph for each modality, we learn a joint graph for multiple modalities to capture the correlations among modalities. Finally, the representations in the latent space are projected into the target space to perform AD diagnosis. An alternating optimization algorithm with proved convergence is developed to solve the optimization objective. Extensive experimental results show the effectiveness of the proposed method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
激昂的逊发布了新的文献求助10
刚刚
搜集达人应助唠叨的以柳采纳,获得10
1秒前
1秒前
嘉欣博博发布了新的文献求助10
1秒前
1秒前
风趣小蜜蜂完成签到,获得积分10
1秒前
李健的小迷弟应助jue采纳,获得10
1秒前
2秒前
4秒前
尊敬灵萱发布了新的文献求助20
5秒前
5秒前
打打应助BFQQQQ采纳,获得10
5秒前
111发布了新的文献求助10
6秒前
悦耳人生发布了新的文献求助10
6秒前
大个应助木杉采纳,获得10
6秒前
彭于晏应助聂亦采纳,获得10
7秒前
7秒前
毛竹完成签到,获得积分10
8秒前
8秒前
10秒前
515发布了新的文献求助10
10秒前
10秒前
光亮的天真完成签到,获得积分10
11秒前
欢喜牛排发布了新的文献求助10
11秒前
11秒前
兴奋的渊思完成签到,获得积分20
12秒前
尊敬灵萱完成签到,获得积分10
12秒前
Owen应助sinba采纳,获得10
13秒前
15秒前
科研小辣椒2完成签到,获得积分20
16秒前
16秒前
17秒前
zzdd完成签到,获得积分20
17秒前
17秒前
SciGPT应助东方欲晓采纳,获得10
18秒前
felix发布了新的文献求助30
19秒前
优美的问芙完成签到,获得积分10
20秒前
BFQQQQ发布了新的文献求助10
20秒前
可爱的函函应助烛火采纳,获得10
20秒前
呼呼呼发布了新的文献求助10
20秒前
高分求助中
Africanfuturism: African Imaginings of Other Times, Spaces, and Worlds 3000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 2000
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 1000
Structural Equation Modeling of Multiple Rater Data 700
 Introduction to Comparative Public Administration Administrative Systems and Reforms in Europe, Third Edition 3rd edition 590
全球膝关节骨性关节炎市场研究报告 555
Exhibiting Chinese Art in Asia: Histories, Politics and Practices 540
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3888645
求助须知:如何正确求助?哪些是违规求助? 3430928
关于积分的说明 10772106
捐赠科研通 3156003
什么是DOI,文献DOI怎么找? 1742770
邀请新用户注册赠送积分活动 841390
科研通“疑难数据库(出版商)”最低求助积分说明 785894