Artificial Intelligence‐Assisted Ultrasound Diagnosis on Infant Developmental Dysplasia of the Hip Under Constrained Computational Resources

医学 超声波 预测值 诊断准确性 超声学家 髋关节发育不良 放射科 内科学 射线照相术
作者
Bingxuan Huang,Bei Xia,Jikuan Qian,Xinrui Zhou,Xu Zhou,Shengfeng Liu,Chang Ao,Zhongnuo Yan,Zijian Tang,Na Xu,Hongwei Tao,Xuezhi He,Wei Yu,Renfu Zhang,Ruobing Huang,Dong Ni,Xin Yang
出处
期刊:Journal of Ultrasound in Medicine [Wiley]
卷期号:42 (6): 1235-1248 被引量:8
标识
DOI:10.1002/jum.16133
摘要

Ultrasound (US) is important for diagnosing infant developmental dysplasia of the hip (DDH). However, the accuracy of the diagnosis depends heavily on expertise. We aimed to develop a novel automatic system (DDHnet) for accurate, fast, and robust diagnosis of DDH.An automatic system, DDHnet, was proposed to diagnose DDH by analyzing static ultrasound images. A five-fold cross-validation experiment was conducted using a dataset containing 881 patients to verify the performance of DDHnet. In addition, a blind test was conducted on 209 patients (158 normal and 51 abnormal cases). The feasibility and performance of DDHnet were investigated by embedding it into ultrasound machines at low computational cost.DDHnet obtained reliable measurements and accurate diagnosis predictions. It reported an intra-class correlation coefficient (ICC) on α angle of 0.96 (95% CI: 0.93-0.97), β angle of 0.97 (95% CI: 0.95-0.98), FHC of 0.98 (95% CI: 0.96-0.99) and PFD of 0.94 (95% CI: 0.90-0.96) in abnormal cases. DDHnet achieved a sensitivity of 90.56%, specificity of 100%, accuracy of 98.64%, positive predictive value (PPV) of 100%, and negative predictive value (NPV) of 98.44% for the diagnosis of DDH. For the measurement task on the US device, DDHnet took only 1.1 seconds to operate and complete, whereas the experienced senior expert required an average 41.4 seconds.The proposed DDHnet demonstrate state-of-the-art performance for all four indicators of DDH diagnosis. Fast and highly accurate DDH diagnosis is achievable through DDHnet, and is accessible under constrained computational resources.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
邱静完成签到,获得积分10
1秒前
1秒前
斯文败类应助暖阳采纳,获得10
4秒前
斯文败类应助文静的紫萱采纳,获得10
4秒前
5秒前
邱静发布了新的文献求助10
5秒前
6秒前
风中凡霜完成签到,获得积分10
7秒前
冷酷戴曼发布了新的文献求助30
8秒前
qi发布了新的文献求助10
8秒前
8秒前
wang发布了新的文献求助10
8秒前
小马甲应助可心先生采纳,获得10
10秒前
清秀的帽子完成签到,获得积分10
10秒前
风中凡霜发布了新的文献求助10
11秒前
Rita发布了新的文献求助10
12秒前
闹闹发布了新的文献求助10
13秒前
13秒前
14秒前
香蕉觅云应助岁岁知采纳,获得10
15秒前
shelly完成签到,获得积分10
15秒前
15秒前
16秒前
17秒前
17秒前
17秒前
18秒前
Airport完成签到 ,获得积分10
19秒前
HamzaAnsari完成签到,获得积分10
19秒前
CIOOICO1发布了新的文献求助10
20秒前
21秒前
Fantansy发布了新的文献求助10
21秒前
111发布了新的文献求助10
22秒前
马到成功发布了新的文献求助10
23秒前
彭于晏应助科研通管家采纳,获得10
24秒前
xzy998应助科研通管家采纳,获得10
24秒前
量子星尘发布了新的文献求助10
24秒前
成就猫咪应助科研通管家采纳,获得10
24秒前
成就猫咪应助科研通管家采纳,获得10
24秒前
星辰大海应助科研通管家采纳,获得10
24秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III – Liver, Biliary Tract, and Pancreas, 3rd Edition 666
Social Epistemology: The Niches for Knowledge and Ignorance 500
优秀运动员运动寿命的人文社会学因素研究 500
Medicine and the Navy, 1200-1900: 1815-1900 420
Introducing Sociology Using the Stuff of Everyday Life 400
Conjugated Polymers: Synthesis & Design 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4247151
求助须知:如何正确求助?哪些是违规求助? 3780263
关于积分的说明 11868709
捐赠科研通 3433508
什么是DOI,文献DOI怎么找? 1884515
邀请新用户注册赠送积分活动 936031
科研通“疑难数据库(出版商)”最低求助积分说明 842090