Artificial Intelligence in Breast Cancer Screening

医学 食品药品监督管理局 急诊分诊台 乳腺癌 间隙 梅德林 人工智能 临床试验 癌症 医学物理学 机器学习 病理 精神科 医疗急救 内科学 计算机科学 泌尿科 政治学 法学
作者
Kunal C. Potnis,Joseph S. Ross,Sanjay Aneja,Cary P. Gross,Ilana B. Richman
出处
期刊:JAMA Internal Medicine [American Medical Association]
卷期号:182 (12): 1306-1306 被引量:28
标识
DOI:10.1001/jamainternmed.2022.4969
摘要

Contemporary approaches to artificial intelligence (AI) based on deep learning have generated interest in the application of AI to breast cancer screening (BCS). The US Food and Drug Administration (FDA) has approved several next-generation AI products indicated for BCS in recent years; however, questions regarding their accuracy, appropriate use, and clinical utility remain.To describe the current FDA regulatory process for AI products, summarize the evidence used to support FDA clearance and approval of AI products indicated for BCS, consider the advantages and limitations of current regulatory approaches, and suggest ways to improve the current system.Premarket notifications and other publicly available documents used for FDA clearance and approval of AI products indicated for BCS from January 1, 2017, to December 31, 2021.Nine AI products indicated for BCS for identification of suggestive lesions and mammogram triage were included. Most of the products had been cleared through the 510(k) pathway, and all clearances were based on previously collected retrospective data; 6 products used multicenter designs; 7 products used enriched data; and 4 lacked details on whether products were externally validated. Test performance measures, including sensitivity, specificity, and area under the curve, were the main outcomes reported. Most of the devices used tissue biopsy as the criterion standard for BCS accuracy evaluation. Other clinical outcome measures, including cancer stage at diagnosis and interval cancer detection, were not reported for any of the devices.The findings of this review suggest important gaps in reporting of data sources, data set type, validation approach, and clinical utility assessment. As AI-assisted reading becomes more widespread in BCS and other radiologic examinations, strengthened FDA evidentiary regulatory standards, development of postmarketing surveillance, a focus on clinically meaningful outcomes, and stakeholder engagement will be critical for ensuring the safety and efficacy of these products.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
yliaoyou完成签到,获得积分10
3秒前
温暖的涵易应助NN采纳,获得30
6秒前
黄辉冯完成签到,获得积分10
9秒前
脑洞疼应助wlei采纳,获得10
10秒前
gambling完成签到 ,获得积分20
11秒前
scm完成签到,获得积分10
15秒前
科研通AI5应助小纯牛奶采纳,获得10
16秒前
热心市民完成签到,获得积分0
16秒前
Wudifairy完成签到,获得积分10
16秒前
18秒前
吃紫薯的鱼完成签到,获得积分10
20秒前
22秒前
YOY发布了新的文献求助10
22秒前
711moiii完成签到,获得积分10
22秒前
23秒前
隐形曼青应助黄石采纳,获得10
25秒前
陈JY完成签到 ,获得积分10
25秒前
科研通AI5应助ljs采纳,获得10
26秒前
HEAUBOOK应助峡星牙采纳,获得30
26秒前
啊啊啊发布了新的文献求助10
26秒前
wlei发布了新的文献求助10
28秒前
28秒前
芦荟板蓝根完成签到,获得积分10
33秒前
33秒前
34秒前
Holly完成签到,获得积分10
35秒前
阳光的初瑶完成签到,获得积分20
39秒前
Ling完成签到,获得积分10
40秒前
41秒前
大尾巴鱼完成签到,获得积分10
43秒前
44秒前
绿绿发布了新的文献求助10
46秒前
49秒前
CGBY完成签到 ,获得积分10
50秒前
52秒前
lzk完成签到,获得积分10
52秒前
小纯牛奶完成签到,获得积分10
56秒前
热心乌完成签到,获得积分0
58秒前
1分钟前
高分求助中
Basic Discrete Mathematics 1000
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3799165
求助须知:如何正确求助?哪些是违规求助? 3344871
关于积分的说明 10321911
捐赠科研通 3061287
什么是DOI,文献DOI怎么找? 1680191
邀请新用户注册赠送积分活动 806919
科研通“疑难数据库(出版商)”最低求助积分说明 763445