Artificial Intelligence in Breast Cancer Screening

医学 食品药品监督管理局 急诊分诊台 乳腺癌 间隙 梅德林 人工智能 临床试验 癌症 医学物理学 机器学习 病理 精神科 医疗急救 内科学 计算机科学 泌尿科 政治学 法学
作者
Kunal C. Potnis,Joseph S. Ross,Sanjay Aneja,Cary P. Gross,Ilana B. Richman
出处
期刊:JAMA Internal Medicine [American Medical Association]
卷期号:182 (12): 1306-1306 被引量:48
标识
DOI:10.1001/jamainternmed.2022.4969
摘要

Contemporary approaches to artificial intelligence (AI) based on deep learning have generated interest in the application of AI to breast cancer screening (BCS). The US Food and Drug Administration (FDA) has approved several next-generation AI products indicated for BCS in recent years; however, questions regarding their accuracy, appropriate use, and clinical utility remain.To describe the current FDA regulatory process for AI products, summarize the evidence used to support FDA clearance and approval of AI products indicated for BCS, consider the advantages and limitations of current regulatory approaches, and suggest ways to improve the current system.Premarket notifications and other publicly available documents used for FDA clearance and approval of AI products indicated for BCS from January 1, 2017, to December 31, 2021.Nine AI products indicated for BCS for identification of suggestive lesions and mammogram triage were included. Most of the products had been cleared through the 510(k) pathway, and all clearances were based on previously collected retrospective data; 6 products used multicenter designs; 7 products used enriched data; and 4 lacked details on whether products were externally validated. Test performance measures, including sensitivity, specificity, and area under the curve, were the main outcomes reported. Most of the devices used tissue biopsy as the criterion standard for BCS accuracy evaluation. Other clinical outcome measures, including cancer stage at diagnosis and interval cancer detection, were not reported for any of the devices.The findings of this review suggest important gaps in reporting of data sources, data set type, validation approach, and clinical utility assessment. As AI-assisted reading becomes more widespread in BCS and other radiologic examinations, strengthened FDA evidentiary regulatory standards, development of postmarketing surveillance, a focus on clinically meaningful outcomes, and stakeholder engagement will be critical for ensuring the safety and efficacy of these products.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
354完成签到,获得积分10
1秒前
邓佳鑫Alan应助木象爱火锅采纳,获得10
1秒前
起名废人应助彼得大帝采纳,获得10
1秒前
TL完成签到,获得积分10
2秒前
2秒前
小二郎应助冷静柚子采纳,获得10
2秒前
左丘以云发布了新的文献求助10
3秒前
4秒前
4秒前
bubuliuing发布了新的文献求助10
4秒前
4秒前
清脆的土豆完成签到,获得积分0
4秒前
负责月光发布了新的文献求助10
4秒前
大模型应助永字号采纳,获得10
5秒前
King完成签到,获得积分10
5秒前
meimingzi发布了新的文献求助10
5秒前
min发布了新的文献求助10
5秒前
hua发布了新的文献求助10
5秒前
5秒前
5秒前
所所应助小猫蛋堡采纳,获得10
6秒前
帅气的鑫磊完成签到,获得积分10
6秒前
田鑫智完成签到,获得积分10
7秒前
吕小布完成签到,获得积分10
7秒前
唐唐完成签到,获得积分10
7秒前
搜集达人应助MrFamous采纳,获得10
7秒前
羊羊羊完成签到,获得积分10
8秒前
栗子完成签到,获得积分10
8秒前
TRz发布了新的文献求助20
8秒前
充电宝应助qi采纳,获得10
8秒前
柏林寒冬应助乐枳采纳,获得10
8秒前
幸福纲发布了新的文献求助10
8秒前
青青子衿完成签到 ,获得积分10
9秒前
9秒前
小刺猬完成签到,获得积分10
9秒前
无奈冥完成签到,获得积分10
10秒前
田様应助93采纳,获得10
10秒前
隐形的觅夏完成签到 ,获得积分10
10秒前
LX完成签到,获得积分10
10秒前
丁双飞发布了新的文献求助10
10秒前
高分求助中
【请各位用户详细阅读此贴后再求助】科研通的精品贴汇总(请勿应助) 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 500
Maritime Applications of Prolonged Casualty Care: Drowning and Hypothermia on an Amphibious Warship 500
Comparison analysis of Apple face ID in iPad Pro 13” with first use of metasurfaces for diffraction vs. iPhone 16 Pro 500
Towards a $2B optical metasurfaces opportunity by 2029: a cornerstone for augmented reality, an incremental innovation for imaging (YINTR24441) 500
Robot-supported joining of reinforcement textiles with one-sided sewing heads 490
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4061887
求助须知:如何正确求助?哪些是违规求助? 3600562
关于积分的说明 11434414
捐赠科研通 3323877
什么是DOI,文献DOI怎么找? 1827554
邀请新用户注册赠送积分活动 897982
科研通“疑难数据库(出版商)”最低求助积分说明 818829