Dynamic Cross-Task Representation Adaptation for Clinical Targets Co-Segmentation in CT Image-Guided Post-Prostatectomy Radiotherapy

分割 计算机科学 工作流程 人工智能 任务(项目管理) 特征(语言学) 前列腺切除术 计算机视觉 医学物理学 医学 前列腺 内科学 哲学 癌症 经济 数据库 管理 语言学
作者
Fan Wang,Xuanang Xu,Defu Yang,Ronald C. Chen,Trevor J. Royce,Andrew Z. Wang,Jun Lian,Chunfeng Lian
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:42 (4): 1046-1055 被引量:3
标识
DOI:10.1109/tmi.2022.3223405
摘要

Adjuvant and salvage radiotherapy after radical prostatectomy requires precise delineations of prostate bed (PB), i.e., the clinical target volume, and surrounding organs at risk (OARs) to optimize radiotherapy planning. Segmenting PB is particularly challenging even for clinicians, e.g., from the planning computed tomography (CT) images, as it is an invisible/virtual target after the operative removal of the cancerous prostate gland. Very recently, a few deep learning-based methods have been proposed to automatically contour non-contrast PB by leveraging its spatial reliance on adjacent OARs (i.e., the bladder and rectum) with much more clear boundaries, mimicking the clinical workflow of experienced clinicians. Although achieving state-of-the-art results from both the clinical and technical aspects, these existing methods improperly ignore the gap between the hierarchical feature representations needed for segmenting those fundamentally different clinical targets (i.e., PB and OARs), which in turn limits their delineation accuracy. This paper proposes an asymmetric multi-task network integrating dynamic cross-task representation adaptation (i.e., DyAdapt) for accurate and efficient co-segmentation of PB and OARs in one-pass from CT images. In the learning-to-learn framework, the DyAdapt modules adaptively transfer the hierarchical feature representations from the source task of OARs segmentation to match up with the target (and more challenging) task of PB segmentation, conditioned on the dynamic inter-task associations learned from the learning states of the feed-forward path. On a real-patient dataset, our method led to state-of-the-art results of PB and OARs co-segmentation. Code is available at https://github.com/ladderlab-xjtu/DyAdapt .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
雁夜完成签到,获得积分10
2秒前
SYLH应助Steven采纳,获得10
3秒前
123应助科研通管家采纳,获得10
3秒前
3秒前
在水一方应助科研通管家采纳,获得10
3秒前
3秒前
英俊的铭应助科研通管家采纳,获得10
3秒前
冰魂应助科研通管家采纳,获得10
3秒前
Jasper应助科研通管家采纳,获得10
3秒前
Hello应助科研通管家采纳,获得10
3秒前
思源应助科研通管家采纳,获得10
3秒前
Lucas应助科研通管家采纳,获得10
3秒前
Vivian发布了新的文献求助10
3秒前
爆米花应助科研通管家采纳,获得10
3秒前
汉堡包应助科研通管家采纳,获得10
3秒前
完美世界应助科研通管家采纳,获得10
4秒前
llt应助科研通管家采纳,获得10
4秒前
研友_VZG7GZ应助科研通管家采纳,获得10
4秒前
Jasper应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
wtf52018完成签到,获得积分10
5秒前
情怀应助勤劳涵山采纳,获得10
5秒前
美满奇异果完成签到,获得积分10
9秒前
烟花应助颜值即正义采纳,获得10
9秒前
Vivian完成签到,获得积分10
10秒前
10秒前
外向含之完成签到,获得积分10
13秒前
隐形雁玉应助热情平凡采纳,获得10
13秒前
14秒前
猕猴桃完成签到,获得积分10
14秒前
桐桐应助genius采纳,获得30
16秒前
勇敢虫子不怕困难完成签到,获得积分10
16秒前
gigadrill发布了新的文献求助10
16秒前
19秒前
听风发布了新的文献求助10
19秒前
bc应助尼古拉斯丨大黑采纳,获得20
19秒前
21秒前
高分求助中
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
E-commerce live streaming impact analysis based on stimulus-organism response theory 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3801615
求助须知:如何正确求助?哪些是违规求助? 3347409
关于积分的说明 10333569
捐赠科研通 3063591
什么是DOI,文献DOI怎么找? 1681910
邀请新用户注册赠送积分活动 807800
科研通“疑难数据库(出版商)”最低求助积分说明 763921