X-Ray to DRR Images Translation for Efficient Multiple Objects Similarity Measures in Deformable Model 3D/2D Registration

人工智能 计算机视觉 图像配准 计算机科学 稳健性(进化) 翻译(生物学) 相似性(几何) 投影(关系代数) 射线照相术 匹配(统计) 模式识别(心理学) 图像(数学) 数学 算法 化学 放射科 统计 信使核糖核酸 基因 医学 生物化学
作者
B. Aubert,Thierry Cresson,Jacques A. de Guise,Carlos Vázquez
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:42 (4): 897-909 被引量:18
标识
DOI:10.1109/tmi.2022.3218568
摘要

The robustness and accuracy of the intensity-based 3D/2D registration of a 3D model on planar X-ray image(s) is related to the quality of the image correspondences between the digitally reconstructed radiographs (DRR) generated from the 3D models (varying image) and the X-ray images (fixed target). While much effort may be devoted to generating realistic DRR that are similar to real X-rays (using complex X-ray simulation, adding densities information in 3D models, etc.), significant differences still remain between DRR and real X-ray images. Differences such as the presence of adjacent or superimposed soft tissue and bony or foreign structures lead to image matching difficulties and decrease the 3D/2D registration performance. In the proposed method, the X-ray images were converted into DRR images using a GAN-based cross-modality image-to-images translation. With this added prior step of XRAY-to-DRR translation, standard similarity measures become efficient even when using simple and fast DRR projection. For both images to match, they must belong to the same image domain and essentially contain the same kind of information. The XRAY-to-DRR translation also addresses the well-known issue of registering an object in a scene composed of multiple objects by separating the superimposed or/and adjacent objects to avoid mismatching across similar structures. We applied the proposed method to the 3D/2D fine registration of vertebra deformable models to biplanar radiographs of the spine. We showed that the XRAY-to-DRR translation enhances the registration results, by increasing the capture range and decreasing dependence on the similarity measure choice since the multi-modal registration becomes mono-modal.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
眯眯眼的衬衫应助wgf采纳,获得10
3秒前
gogo完成签到 ,获得积分10
3秒前
3秒前
又习完成签到,获得积分20
7秒前
QQQ发布了新的文献求助30
7秒前
8秒前
8秒前
8秒前
卢映之完成签到,获得积分10
8秒前
8秒前
9秒前
Barry完成签到,获得积分10
9秒前
9秒前
yuyu完成签到,获得积分10
10秒前
蛋总发布了新的文献求助10
10秒前
大邓宝完成签到,获得积分10
10秒前
研友_VZG7GZ应助又习采纳,获得10
11秒前
SYLH应助科研通管家采纳,获得10
11秒前
Amostre88应助科研通管家采纳,获得10
11秒前
SYLH应助科研通管家采纳,获得10
11秒前
SYLH应助科研通管家采纳,获得10
11秒前
李健应助科研通管家采纳,获得10
11秒前
CipherSage应助星落枝头采纳,获得10
11秒前
orixero应助科研通管家采纳,获得10
11秒前
Hello应助科研通管家采纳,获得10
11秒前
SYLH应助科研通管家采纳,获得10
11秒前
SYLH应助科研通管家采纳,获得10
11秒前
星辰大海应助科研通管家采纳,获得10
11秒前
所所应助科研通管家采纳,获得10
11秒前
SYLH应助科研通管家采纳,获得10
11秒前
SYLH应助科研通管家采纳,获得10
12秒前
Owen应助科研通管家采纳,获得10
12秒前
彭于晏应助科研通管家采纳,获得10
12秒前
搜集达人应助科研通管家采纳,获得10
12秒前
12秒前
12秒前
英俊的铭应助科研通管家采纳,获得10
12秒前
12秒前
12秒前
高分求助中
ФОРМИРОВАНИЕ АО "МЕЖДУНАРОДНАЯ КНИГА" КАК ВАЖНЕЙШЕЙ СИСТЕМЫ ОТЕЧЕСТВЕННОГО КНИГОРАСПРОСТРАНЕНИЯ 3000
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 1000
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 500
Quantum Computing for Quantum Chemistry 500
Thermal Expansion of Solids (CINDAS Data Series on Material Properties, v. I-4) 470
Fire Protection Handbook, 21st Edition volume1和volume2 360
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3902830
求助须知:如何正确求助?哪些是违规求助? 3447466
关于积分的说明 10849482
捐赠科研通 3172841
什么是DOI,文献DOI怎么找? 1753115
邀请新用户注册赠送积分活动 847561
科研通“疑难数据库(出版商)”最低求助积分说明 790135