人工智能
卷积神经网络
计算机科学
背景(考古学)
肺栓塞
维数(图论)
深度学习
特征(语言学)
医学影像学
计算机断层摄影术
传感器融合
模式识别(心理学)
计算机视觉
机器学习
放射科
医学
古生物学
语言学
哲学
外科
数学
纯数学
生物
作者
Zhuo Zhi,Moe Elbadawi,Adam Daneshmend,Mine Orlu,Abdul W. Basit,Andreas Demosthenous,Miguel Tréfaut Rodrigues
标识
DOI:10.1109/embc48229.2022.9871041
摘要
Pulmonary Embolism (PE) is a severe medical condition that can pose a significant risk to life. Traditional deep learning methods for PE diagnosis are based on Computed Tomography (CT) images and do not consider the patient's clinical context. To make full use of patient's clinical information, this article presents a multimodal fusion model ingesting Electronic Health Record (EHR) data and CT images for PE diagnosis. The proposed model is based on multilayer perception and convolutional neural networks. To remove the invalid information in the EHR data, the multidimensional scaling algorithm is performed for feature dimension reduction. The EHR data and CT images of 600 patients are used for experiments. The experiment results show that the proposed models outperform existing methods and the multimodal fusion model shows better performance than the single-input model.
科研通智能强力驱动
Strongly Powered by AbleSci AI