D-DAGNet: AN IMPROVED HYBRID DEEP NETWORK FOR AUTOMATED CLASSIFICATION OF GLAUCOMA FROM OCT IMAGES

计算机科学 可解释性 人工智能 光学相干层析成像 卷积神经网络 青光眼 过度拟合 有向无环图 模式识别(心理学) 深度学习 人工神经网络 图形 算法 眼科 医学 理论计算机科学
作者
A. P. Sunija,Varun P. Gopi,Adithya K. Krishna
出处
期刊:Biomedical Engineering: Applications, Basis and Communications [World Scientific]
卷期号:35 (01)
标识
DOI:10.4015/s1016237222500429
摘要

The introduction of Optical Coherence Tomography (OCT) in ophthalmology has resulted in significant progress in the early detection of glaucoma. Traditional approaches to identifying retinal diseases comprise an analysis of medical history and manual assessment of retinal images. Manual diagnosis is time-consuming and requires considerable human expertise, without which, errors could be costly to human sight. The use of artificial intelligence such as machine learning techniques in image analysis has been gaining ground in recent years for accurate, fast and cost-effective diagnosis from retinal images. This work proposes a Directed Acyclic Graph (DAG) network that combines Depthwise Convolution (DC) to decisively recognize early-stage retinal glaucoma from OCT images. The proposed method leverages the benefits of both depthwise convolution and DAG. The Convolutional Neural Network (CNN) information obtained in the proposed architecture is processed as per the partial order over the nodes. The Grad-CAM method is adopted to quantify and visualize normal and glaucomatous OCT heatmaps to improve diagnostic interpretability. The experiments were performed on LFH_Glaucoma dataset composed of 1105 glaucoma and 1049 healthy OCT scans. The proposed faster hybrid Depthwise-Directed Acyclic Graph Network (D-DAGNet) achieved an accuracy of 0.9995, precision of 0.9989, recall of 1.0, F1-score of 0.9994 and AUC of 0.9995 with only 0.0047 M learnable parameters. Hybrid D-DAGNet enhances network training efficacy and significantly reduces learnable parameters required for identification of the features of interest. The proposed network overcomes the problems of overfitting and performance degradation due to accretion of layers in the deep network, and is thus useful for real-time identification of glaucoma features from retinal OCT images.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
尧九完成签到,获得积分10
1秒前
1秒前
英俊的铭应助猪猪hero采纳,获得10
3秒前
3秒前
3秒前
3秒前
3秒前
zz关闭了zz文献求助
4秒前
自然垣发布了新的文献求助10
4秒前
Easy完成签到,获得积分10
5秒前
李健的小迷弟应助尧九采纳,获得10
5秒前
6秒前
Orange应助混子采纳,获得10
6秒前
7秒前
纯真柔发布了新的文献求助10
7秒前
HEIKU应助乐仔采纳,获得10
8秒前
kai0305完成签到,获得积分10
9秒前
yyc666发布了新的文献求助10
9秒前
9秒前
灵泉发布了新的文献求助10
10秒前
Mercury完成签到,获得积分10
11秒前
小宁发布了新的文献求助10
11秒前
12秒前
优秀傲松发布了新的文献求助20
12秒前
jinjun发布了新的文献求助10
13秒前
15秒前
15秒前
猪猪hero发布了新的文献求助10
15秒前
16秒前
自然垣完成签到,获得积分20
16秒前
16秒前
19秒前
TigerOvO完成签到,获得积分10
19秒前
巧克力大王完成签到,获得积分10
20秒前
树123发布了新的文献求助10
20秒前
Easy发布了新的文献求助10
20秒前
华仔应助聪慧红酒采纳,获得30
20秒前
深情安青应助sashimi采纳,获得10
20秒前
纯真柔完成签到,获得积分10
21秒前
安生发布了新的文献求助10
22秒前
高分求助中
Разработка метода ускоренного контроля качества электрохромных устройств 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
Politiek-Politioneele Overzichten van Nederlandsch-Indië. Bronnenpublicatie, Deel II 1929-1930 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3819296
求助须知:如何正确求助?哪些是违规求助? 3362356
关于积分的说明 10416633
捐赠科研通 3080508
什么是DOI,文献DOI怎么找? 1694605
邀请新用户注册赠送积分活动 814703
科研通“疑难数据库(出版商)”最低求助积分说明 768388