Deep Learning vs Traditional Breast Cancer Risk Models to Support Risk-Based Mammography Screening

医学 乳腺癌 置信区间 癌症 乳腺摄影术 接收机工作特性 百分位 队列 风险评估 人口统计学的 内科学 前瞻性队列研究 肿瘤科 人口学 统计 计算机安全 社会学 计算机科学 数学
作者
Constance Lehman,Sarah Mercaldo,Leslie Lamb,Tari A. King,Leif W. Ellisen,Michelle C. Specht,Rulla M. Tamimi
出处
期刊:Journal of the National Cancer Institute [Oxford University Press]
卷期号:114 (10): 1355-1363 被引量:18
标识
DOI:10.1093/jnci/djac142
摘要

Deep learning breast cancer risk models demonstrate improved accuracy compared with traditional risk models but have not been prospectively tested. We compared the accuracy of a deep learning risk score derived from the patient's prior mammogram to traditional risk scores to prospectively identify patients with cancer in a cohort due for screening.We collected data on 119 139 bilateral screening mammograms in 57 617 consecutive patients screened at 5 facilities between September 18, 2017, and February 1, 2021. Patient demographics were retrieved from electronic medical records, cancer outcomes determined through regional tumor registry linkage, and comparisons made across risk models using Wilcoxon and Pearson χ2 2-sided tests. Deep learning, Tyrer-Cuzick, and National Cancer Institute Breast Cancer Risk Assessment Tool (NCI BCRAT) risk models were compared with respect to performance metrics and area under the receiver operating characteristic curves.Cancers detected per thousand patients screened were higher in patients at increased risk by the deep learning model (8.6, 95% confidence interval [CI] = 7.9 to 9.4) compared with Tyrer-Cuzick (4.4, 95% CI = 3.9 to 4.9) and NCI BCRAT (3.8, 95% CI = 3.3 to 4.3) models (P < .001). Area under the receiver operating characteristic curves of the deep learning model (0.68, 95% CI = 0.66 to 0.70) was higher compared with Tyrer-Cuzick (0.57, 95% CI = 0.54 to 0.60) and NCI BCRAT (0.57, 95% CI = 0.54 to 0.60) models. Simulated screening of the top 50th percentile risk by the deep learning model captured statistically significantly more patients with cancer compared with Tyrer-Cuzick and NCI BCRAT models (P < .001).A deep learning model to assess breast cancer risk can support feasible and effective risk-based screening and is superior to traditional models to identify patients destined to develop cancer in large screening cohorts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
李浩宇关注了科研通微信公众号
2秒前
xuelian完成签到,获得积分10
3秒前
小马儿发布了新的文献求助10
4秒前
tansl1989发布了新的文献求助10
5秒前
Longfei完成签到,获得积分20
6秒前
7秒前
7秒前
9秒前
Er1c发布了新的文献求助10
11秒前
没时间解释了完成签到,获得积分10
11秒前
11秒前
12秒前
12秒前
南宫清涟发布了新的文献求助30
14秒前
14秒前
Gzh_NJ发布了新的文献求助10
16秒前
英俊的铭应助Er1c采纳,获得10
16秒前
腊月完成签到,获得积分10
16秒前
小二郎应助高山仰止采纳,获得10
16秒前
一颗药顽完成签到,获得积分10
17秒前
嘻嘻发布了新的文献求助10
17秒前
fat完成签到,获得积分10
17秒前
生动路人发布了新的文献求助10
17秒前
李浩宇发布了新的文献求助10
18秒前
18秒前
活泼的幼蓉完成签到,获得积分20
19秒前
19秒前
周周发布了新的文献求助10
19秒前
20秒前
xinshu完成签到,获得积分10
20秒前
脑洞疼应助王巧儿采纳,获得10
21秒前
结实小蜜蜂完成签到,获得积分10
22秒前
李健的粉丝团团长应助Zero采纳,获得10
22秒前
玛琪玛小姐的狗完成签到,获得积分10
23秒前
23秒前
xulin发布了新的文献求助10
24秒前
YHY完成签到,获得积分10
24秒前
25秒前
大模型应助xhjh03采纳,获得10
25秒前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
Plutonium Handbook 1000
Three plays : drama 1000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1000
Semantics for Latin: An Introduction 999
Psychology Applied to Teaching 14th Edition 600
Robot-supported joining of reinforcement textiles with one-sided sewing heads 580
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4089364
求助须知:如何正确求助?哪些是违规求助? 3627978
关于积分的说明 11503328
捐赠科研通 3340561
什么是DOI,文献DOI怎么找? 1836396
邀请新用户注册赠送积分活动 904380
科研通“疑难数据库(出版商)”最低求助积分说明 822249