已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Machine Learning and Deep Learning Techniques for EEG-Based Prediction of Psychiatric Disorders

深度学习 脑电图 人工智能 心理学 机器学习 学习障碍 计算机科学 精神科 学习障碍
作者
Shake Ibna Abir,Shaharina Shoha,Md Miraj Hossain,Nigar Sultana,Tui Rani Saha,Mohammad Hasan Sarwer,Shariar Islam Saimon,Intiser Islam,Mahmud Hasan
出处
期刊:Journal of computer science and technology studies [Al-Kindi Center for Research and Development]
卷期号:7 (1): 46-63 被引量:7
标识
DOI:10.32996/jcsts.2025.7.1.4
摘要

Early detection of psychiatric disorders as well as efficient treatment are difficult owing to their challenges, which require accurate prediction methods in healthcare. When combined with ML and DL techniques, EEG data promises to yield a promising method for enhancing diagnostic accuracy. In this study, the performance of a wide spectrum of ML and DL techniques for predicting psychiatric disorders from EEG datasets is evaluated and the best choice is found for a particular condition. The study carried an analysis based on public datasets representing diverse psychiatric disorders through systematic analysis. Advanced DL architectures comprising of CNNs and RNNs were compared against the classical traditional ML techniques such as RlForest and Support Vector Machines (SVMs). A comparison between these models was made based on key performance metrics such as accuracy, sensitivity, and specificity. Results showed that DL models, particularly CNNs, excel at feature extraction and classification over traditional ML methods with their highest accuracy of predicting major depressive disorder above 92%. But ML techniques were able to complete faster computationally, in spite of slightly lower predictive accuracy. As DL models excel at capturing complex patterns within EEG data, these findings suggest that there are increased computational demands associated with them. Following that, advanced pattern recognition capabilities associated with DL techniques benefit substantially from the predictive modeling offered by EEG, although their computational efficiency presents as a limitation. This study highlights the importance of hybrid methods combining the best properties of both ML and DL for psychiatric disorders prediction to get improved accuracy and scalability, which is conditioning this generation of safer diagnostic tools for clinical practice .

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
辣椒完成签到 ,获得积分10
1秒前
若离发布了新的文献求助10
2秒前
2秒前
ypqisgood完成签到,获得积分10
2秒前
3秒前
ylh发布了新的文献求助10
3秒前
Bb完成签到,获得积分10
4秒前
JamesPei应助酷酷的冬灵采纳,获得20
5秒前
小白发布了新的文献求助10
6秒前
王雅芝发布了新的文献求助10
7秒前
烟里戏完成签到 ,获得积分10
9秒前
polite完成签到 ,获得积分10
9秒前
yarkye完成签到,获得积分10
9秒前
高挑的若雁完成签到 ,获得积分10
10秒前
10秒前
11秒前
ccm应助隋嫣然采纳,获得10
12秒前
Simpson完成签到 ,获得积分0
14秒前
利于蓄力发布了新的文献求助20
14秒前
15秒前
DING发布了新的文献求助10
15秒前
晚意完成签到 ,获得积分10
17秒前
风清扬发布了新的文献求助80
18秒前
silsotiscolor完成签到,获得积分10
19秒前
所所应助如意荔枝采纳,获得30
22秒前
油菜花完成签到,获得积分10
23秒前
七号在野闪闪完成签到 ,获得积分10
23秒前
云晓完成签到,获得积分10
25秒前
hygge完成签到,获得积分10
25秒前
27秒前
陈陈一一完成签到,获得积分10
27秒前
木之尹完成签到 ,获得积分10
27秒前
浮游应助小乔采纳,获得10
27秒前
AJKLDJAK完成签到,获得积分20
27秒前
顾乐乐完成签到,获得积分10
30秒前
30秒前
123完成签到 ,获得积分10
31秒前
福娃哇完成签到 ,获得积分10
31秒前
合适尔蝶完成签到,获得积分10
31秒前
KK完成签到,获得积分20
32秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Hydrothermal Circulation and Seawater Chemistry: Links and Feedbacks 1200
A Half Century of the Sonogashira Reaction 1000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
The Chemical Industry in Europe, 1850–1914 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5159856
求助须知:如何正确求助?哪些是违规求助? 4354199
关于积分的说明 13557874
捐赠科研通 4198117
什么是DOI,文献DOI怎么找? 2302416
邀请新用户注册赠送积分活动 1302494
关于科研通互助平台的介绍 1247719