User Behavior Simulation with Large Language Model-based Agents for Recommender Systems

推荐系统 计算机科学 人机交互 情报检索
作者
Lei Wang,Jingsen Zhang,Hao Yang,Z. P. Chen,Jiakai Tang,Zeyu Zhang,Xu Chen,Yankai Lin,Hao Sun,Ruihua Song,Wayne Xin Zhao,Jun Xu,Zhicheng Dou,Jun Wang,Ji-Rong Wen
出处
期刊:ACM Transactions on Information Systems [Association for Computing Machinery]
被引量:3
标识
DOI:10.1145/3708985
摘要

Simulating high quality user behavior data has always been a fundamental yet challenging problem in human-centered applications such as recommendation systems, social networks, among many others. The major difficulty of user behavior simulation originates from the intricate mechanism of human cognitive and decision processes. Recently, substantial evidence have suggested that by learning huge amounts of web knowledge, large language models (LLMs) can achieve human-like intelligence and generalization capabilities. Inspired by such capabilities, in this paper, we take an initial step to study the potential of using LLMs for user behavior simulation in the recommendation domain. To make LLMs act like humans, we design profile, memory and action modules to equip them, building LLM-based agents to simulate real users. To enable interactions between different agents and observe their behavior patterns, we design a sandbox environment, where each agent can interact with the recommendation system, and different agents can converse with their friends via one-to-one chatting or one-to-many social broadcasting. In the experiments, we first demonstrate the believability of the agent-generated behaviors based on both subjective and objective evaluations. Then, to show the potential applications of our method, we simulate and study two social phenomenons including (1) information cocoons and (2) user conformity behaviors. We find that controlling the personalization degree of recommendation algorithms and improving the heterogeneity of user social relations can be two effective strategies for alleviating the problem of information cocoon, and the conformity behaviors can be highly influenced by the amount of user social relations. To advance this direction, we have released our project at https://github.com/RUC-GSAI/YuLan-Rec .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
科研通AI5应助舒心新儿采纳,获得10
1秒前
研友_89Nm7L完成签到,获得积分10
1秒前
1秒前
3秒前
JamesPei应助wq采纳,获得10
3秒前
暴躁的晓啸完成签到 ,获得积分10
5秒前
zhengnan666发布了新的文献求助10
6秒前
科研通AI5应助跳跃的访琴采纳,获得10
6秒前
早睡早起发布了新的文献求助10
6秒前
7秒前
8秒前
Owen应助啾一口香菜采纳,获得10
8秒前
小Fun完成签到 ,获得积分10
9秒前
顺利士萧完成签到,获得积分20
9秒前
杳鸢完成签到,获得积分0
9秒前
冰魂应助小费采纳,获得10
10秒前
正直美女完成签到,获得积分10
11秒前
马桶盖盖子完成签到 ,获得积分10
12秒前
小许要顺利毕业完成签到,获得积分10
12秒前
洋芋锅巴发布了新的文献求助10
12秒前
14秒前
14秒前
Ettrickfield完成签到,获得积分10
15秒前
半。。完成签到,获得积分10
16秒前
桐桐应助123456采纳,获得10
16秒前
李俊枫发布了新的文献求助10
17秒前
风犬少年发布了新的文献求助10
18秒前
现代的人达完成签到,获得积分10
18秒前
19秒前
机灵柚子应助零零采纳,获得10
19秒前
20秒前
20秒前
21秒前
22秒前
日出发布了新的文献求助10
23秒前
23秒前
郝富完成签到,获得积分10
24秒前
24秒前
12发布了新的文献求助10
24秒前
高分求助中
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
E-commerce live streaming impact analysis based on stimulus-organism response theory 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3801265
求助须知:如何正确求助?哪些是违规求助? 3346952
关于积分的说明 10331093
捐赠科研通 3063252
什么是DOI,文献DOI怎么找? 1681462
邀请新用户注册赠送积分活动 807600
科研通“疑难数据库(出版商)”最低求助积分说明 763785