已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Automated navigation of condensate phase behavior with active machine learning

计算机科学 过程(计算) 相(物质) 表征(材料科学) 生物系统 纳米技术 人工智能 材料科学 化学 生物 操作系统 有机化学
作者
Yannick H. A. Leurs,Willem van den Hout,Andrea Gardin,Joost van Dongen,Jan C. M. van Hest,Francesca Grisoni,Luc Brunsveld
标识
DOI:10.26434/chemrxiv-2024-frnj3
摘要

Biomolecular condensates are essential functional cellular structures that form through phase separation of macromolecules such as proteins and RNA. Synthetic condensates have recently gathered great interest as they can be engineered to better understand the formation mechanism of these cellular condensates and serve as cell-mimetic platforms to develop novel therapeutic strategies. The complexity of the biomolecular components and their reciprocal interactions, however, makes precise engineering and systematic characterization of condensate formation a challenging endeavor. While constructing phase diagrams is a systematic approach to gain comprehensive insight into phase separation behavior, it is a time-consuming and labor-intensive process. Here, we present an automated platform for efficiently mapping multi-dimensional phase diagrams of condensates. The automated platform incorporates a pipetting system for sample formulation, and an autonomous confocal microscope for particle property analysis and characterization. Active machine learning – which allows iterative model improvement – is used to learn from previous experiments and steer future experiments towards an efficient exploration of phase boundaries. The versatility of the pipeline is demonstrated by showcasing its ability to rapidly explore the phase behavior of various polypeptides of opposite charge across formulations, producing detailed and reproducible multidimensional phase diagrams. Beyond identifying phase boundaries, the platform also provides information-rich data, enabling quantification of key condensate properties such as particle size, count, and volume fraction – adding functional insights to phase diagrams. This self-driven platform is robust and generalizable, allowing easy extension to any given combination of condensate-forming materials, ultimately providing key insights into their formation and characteristics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
强健的成协关注了科研通微信公众号
1秒前
2秒前
RainyBFF完成签到 ,获得积分10
2秒前
2秒前
Jiangzhibing发布了新的文献求助10
3秒前
zzz完成签到 ,获得积分10
3秒前
4秒前
5秒前
胡胡发布了新的文献求助30
5秒前
ljh发布了新的文献求助10
5秒前
Bell完成签到,获得积分20
6秒前
RonK完成签到,获得积分20
7秒前
8秒前
艾伦.耶格尔完成签到,获得积分10
9秒前
Evan完成签到 ,获得积分10
9秒前
烟消云散发布了新的文献求助10
10秒前
科研通AI5应助LL采纳,获得10
10秒前
夜行完成签到,获得积分10
11秒前
13秒前
13秒前
14秒前
Ava应助我是闪电采纳,获得10
15秒前
17秒前
19秒前
20秒前
20秒前
cx完成签到 ,获得积分10
21秒前
22秒前
22秒前
23秒前
小小铱发布了新的文献求助10
24秒前
24秒前
酷炫笑珊完成签到,获得积分10
24秒前
25秒前
ss发布了新的文献求助10
26秒前
黎夜发布了新的文献求助10
28秒前
张文博发布了新的文献求助10
28秒前
科研通AI5应助HESOYAM采纳,获得30
29秒前
Mark完成签到 ,获得积分10
30秒前
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
Thomas Hobbes' Mechanical Conception of Nature 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5090007
求助须知:如何正确求助?哪些是违规求助? 4304665
关于积分的说明 13414601
捐赠科研通 4130315
什么是DOI,文献DOI怎么找? 2262199
邀请新用户注册赠送积分活动 1266136
关于科研通互助平台的介绍 1200822