Microfluidics-Assembled Nanovesicles for Nucleic Acid Delivery

核酸 微流控 纳米技术 药物输送 化学 小分子 细胞毒性 生物物理学 材料科学 生物化学 体外 生物
作者
Xuanyu Li,Zhiliang Qin,Saijie Wang,Lingmin Zhang,Xingyu Jiang
出处
期刊:Accounts of Chemical Research [American Chemical Society]
被引量:3
标识
DOI:10.1021/acs.accounts.4c00738
摘要

ConspectusMicrofluidic technologies have become a highly effective platform for the precise and reproducible production of nanovesicles used in drug and nucleic acid delivery. One of their key advantages lies in the one-step assembly of multidrug delivery nanovesicles, which improves batch-to-batch reproducibility by minimizing the intermediate steps typically required in conventional methods. These steps often involve complex hydrophobic and electrostatic interactions, leading to variability in the nanovesicle composition and performance. Microfluidic systems streamline the encapsulation of diverse therapeutic agents, including hydrophilic nucleic acids, proteins, and both hydrophobic and hydrophilic small molecules, within a single chip, ensuring a more consistent production process. This capability enables the codelivery of multiple drugs targeting different disease pathways, which is particularly valuable in reducing the risk of drug resistance.Despite the promise of nanovesicles for nucleic acid delivery, their clinical translation has been hindered by safety concerns, particularly cytotoxicity, which has overshadowed efforts to improve in vivo stability and delivery efficiency. Positively charged nanovesicles, commonly used to encapsulate negatively charged nucleic acids, tend to exhibit significant cytotoxicity. To address this, charge-shifting materials that respond to pH changes or surface modifications have been proposed as promising strategies. Shifting the surface charge from positive to neutral or negative at physiological pH can reduce the cytotoxicity, enhancing the clinical feasibility of these nanovesicle-based therapies.Microfluidic platforms offer precise control over key nanovesicle properties, including particle size, rigidity, morphology, and encapsulation efficiency. Particle size is relatively easy to adjust by controlling flow rates within microfluidic channels, with higher flow rates generally producing smaller particles. However, continuous tuning of the particle rigidity remains challenging. By manipulation of the interfacial water layer between hydrophobic and amphiphilic components during nanoparticle formation, future designs may achieve greater control over rigidity, which is critical for improving cellular uptake and biodistribution. While shape tuning using microfluidic chips has not yet been fully explored in biomedical applications, advances in materials science may enable this aspect in the future, offering further customization of the nanovesicle properties.The integration of nanovesicle assembly and surface modification within a single microfluidic platform presents challenges due to the differing speeds of these processes. Nanovesicle assembly is typically rapid, whereas surface modifications, such as those involving functional biomolecules, occur more slowly and often require purification steps. Recent advances, such as rotary valve designs and single-axis camshaft mechanisms, offer precise control over flow mixing at different stages of the process, allowing for the automation of nanovesicle assembly and surface modification, thereby improving batch-to-batch reproducibility.In conclusion, microfluidic technologies represent a promising approach for the development of multifunctional nanovesicles with the potential to address key challenges in drug delivery and precision medicine. While obstacles related to cytotoxicity, scalability, and reproducibility remain, innovations in chip design, materials, and automation are paving the way for broader application in clinical settings. Future research, potentially incorporating machine learning, could further optimize the relationship between nanovesicle properties and biological outcomes, advancing the use of microfluidic technologies for therapeutic delivery.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
耳朵儿歌发布了新的文献求助10
1秒前
无花果应助李湘采纳,获得10
1秒前
narthon应助科研通管家采纳,获得10
3秒前
wy.he应助科研通管家采纳,获得60
3秒前
8R60d8应助科研通管家采纳,获得10
3秒前
www应助科研通管家采纳,获得10
3秒前
传奇3应助科研通管家采纳,获得10
3秒前
英俊的铭应助科研通管家采纳,获得10
3秒前
CipherSage应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
Owen应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
4秒前
萱萱发布了新的文献求助10
5秒前
5秒前
欣喜访文发布了新的文献求助10
5秒前
Nico应助lo王一博_赵丽颖ve采纳,获得10
6秒前
额123没名完成签到 ,获得积分10
6秒前
123完成签到,获得积分20
6秒前
Chen47完成签到,获得积分10
8秒前
ylh完成签到,获得积分10
9秒前
chenmi应助shiqi采纳,获得10
10秒前
nbnbaaa发布了新的文献求助20
10秒前
高挑的沛珊完成签到,获得积分10
11秒前
Clarence发布了新的文献求助30
12秒前
zhouyao完成签到,获得积分20
12秒前
12秒前
14秒前
佘炭炭完成签到,获得积分10
14秒前
激动的半梦完成签到,获得积分20
14秒前
小巧的夜梅完成签到,获得积分10
14秒前
时尚初柳完成签到,获得积分10
15秒前
sunianjinshi发布了新的文献求助10
17秒前
rua发布了新的文献求助10
19秒前
奋斗藏花完成签到,获得积分10
20秒前
zb完成签到,获得积分10
21秒前
龙卡烧烤店完成签到,获得积分10
21秒前
25秒前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
Semantics for Latin: An Introduction 1055
Plutonium Handbook 1000
Three plays : drama 1000
Psychology Applied to Teaching 14th Edition 600
Robot-supported joining of reinforcement textiles with one-sided sewing heads 600
Cochrane Handbook for Systematic Reviews ofInterventions(current version) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4101220
求助须知:如何正确求助?哪些是违规求助? 3639139
关于积分的说明 11531885
捐赠科研通 3347765
什么是DOI,文献DOI怎么找? 1839830
邀请新用户注册赠送积分活动 907015
科研通“疑难数据库(出版商)”最低求助积分说明 824163