Intelligent detection of maize pests based on StyleGAN2-ADA and FNW YOLOv8

计算机科学 农业工程 工程类
作者
Liu Liu,Kai Xue,Jingtao Qi
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:36 (1): 015421-015421
标识
DOI:10.1088/1361-6501/ad8cf4
摘要

Abstract Rapid and precise detection of maize pests at an early stage is important for reducing the economic loss of crops. To address the problem of poor and inefficient identification of maize pests in practical production environments, this study proposed an intelligent detection method for maize pests based on the StyleGAN2 and FNW YOLOv8 methods. Expanded maize pest data from StyleGAN2-ADA. In the feature extraction network, the replacement of a FasterNet lightweight network reduces the model complexity and speeds up detection. The normalization-based attention module (NAM) is integrated into the back end of the signature convergence network to suppress redundant non-significant feature representations. After optimizing the loss function via Wise Intersection of Union v3 (WIoU v3), the FNW YOLOv8 algorithm was introduced. The findings indicate that this algorithm enhances the precision and F1 scores by 3.77% and 5.95%, respectively, when compared to the baseline model. Notably, the FNW YOLOv8 model achieved real-time detection speed of 289.1 fps. Compared to normal models, the FNW YOLOv8 model addresses the limitations associated with standard models, including excess weight. The parameters for FNW YOLOv8 were minimized to just 1.74 million, resulting in a compact model size of 2.36 MB. At the same time, there was a significant decrease in the GFLOPS operations of the FNW YOLOv8. Consequently, to ensure the precision and timeliness of maize pest identification, it is essential to establish a theoretical foundation for their identification and detection on mobile devices.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1335804518完成签到 ,获得积分10
刚刚
一进实验室就犯困完成签到,获得积分10
1秒前
美女完成签到,获得积分10
1秒前
w233完成签到,获得积分10
1秒前
文文完成签到,获得积分10
1秒前
冷傲迎梦发布了新的文献求助10
2秒前
栗子芸完成签到,获得积分10
2秒前
Jane发布了新的文献求助10
2秒前
sin_Lee完成签到,获得积分10
2秒前
zdx1022完成签到,获得积分10
2秒前
huizi发布了新的文献求助50
2秒前
学渣发布了新的文献求助10
2秒前
孤岛完成签到,获得积分10
3秒前
迷路凌柏完成签到 ,获得积分10
3秒前
Singularity应助冉冰采纳,获得10
4秒前
cyf完成签到 ,获得积分10
5秒前
陆柒子完成签到,获得积分10
5秒前
Zoey发布了新的文献求助10
6秒前
kyokyoro完成签到,获得积分10
6秒前
lulalula完成签到,获得积分10
7秒前
7秒前
ttTINA完成签到,获得积分10
7秒前
BYN完成签到 ,获得积分10
7秒前
7秒前
胡雅琴完成签到,获得积分10
8秒前
8秒前
wangxianjin20完成签到,获得积分10
9秒前
afeiwoo完成签到,获得积分10
9秒前
科目三应助科研小白采纳,获得10
9秒前
hohokuz完成签到,获得积分10
9秒前
陶醉世德完成签到,获得积分10
9秒前
10秒前
瘦瘦小萱完成签到,获得积分10
11秒前
w2503完成签到,获得积分10
11秒前
77最可爱完成签到,获得积分10
11秒前
ljl完成签到,获得积分10
11秒前
落寞冬云完成签到,获得积分10
11秒前
怕孤独的聪展完成签到,获得积分10
12秒前
风趣秋双发布了新的文献求助10
12秒前
Owen应助li采纳,获得10
12秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
材料概论 周达飞 ppt 500
Introduction to Strong Mixing Conditions Volumes 1-3 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3808209
求助须知:如何正确求助?哪些是违规求助? 3352922
关于积分的说明 10361718
捐赠科研通 3068974
什么是DOI,文献DOI怎么找? 1685347
邀请新用户注册赠送积分活动 810433
科研通“疑难数据库(出版商)”最低求助积分说明 766150