已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Advanced Cathodes for Practical Lithium–Sulfur Batteries

硫黄 阴极 锂(药物) 锂硫电池 材料科学 冶金 化学 工程类 电气工程 电化学 电极 心理学 物理化学 精神科
作者
Jang‐Yeon Hwang,Hyeona Park,Hun Kim,Shivam Kansara,Yang‐Kook Sun
出处
期刊:Accounts of materials research [American Chemical Society]
标识
DOI:10.1021/accountsmr.4c00368
摘要

ConspectusSulfur, being lightweight, cost-effective, and offering a remarkably high lithium-ion storage capacity, has positioned lithium–sulfur (Li–S) batteries as promising candidates for applications that demand high energy density. These range from electric vehicles (EVs) to urban air mobility (UAM) systems. Despite this potential, Li–S batteries still face significant performance challenges, limiting their practical application. Chief among these challenges are the limited lifespan and low charge–discharge efficiency, predominantly caused by the dissolution of lithium polysulfide intermediate products formed during battery cycling in ether-based electrolytes. Moreover, sulfur and lithium sulfide, which constitute the active material in the cathode, are intrinsically insulating, complicating efforts to increase the active material content in the cathode and fabricate thick cathodes with high conductivity. These issues have long stood in the way of Li–S batteries achieving commercial viability. Overcoming these obstacles requires a multifaceted approach that focuses on modifications at the level of the cathode materials such as the active material, conductive agents, binders, and additives. This Account delves into these key challenges and presents a comprehensive overview of research strategies aimed at enhancing the performance of Li–S batteries with a particular focus on the sulfur cathode. First, the Account addresses practical challenges in Li–S batteries, such as the complex composition of the cathode, the low sulfur utilization efficiency, suboptimal electrolyte-to-sulfur ratios, and nonuniform sulfur conversion reactions. Strategies to overcome these barriers include the design of advanced cathode architectures that promote high sulfur utilization and an improved energy density. Modifications to the components of the cathode and the adjoining materials, such as the incorporation of conductive additives, help mitigate the insulating nature of sulfur.Additionally, the Account places particular emphasis on the innovative use of pelletizing techniques in sulfur cathode fabrication, which has demonstrated notable improvements in the cathode performance. One of the Account's highlights is the discussion of low-temperature operation strategies for Li–S batteries, which is a critical area for real-world application, especially in aerospace and cold-environment operations. There are significant performance differences when transitioning from lab-scale coin cells to larger pouch cells, underscoring the importance of considering cell geometries and their impact on the scalability and performance. Finally, the Account explores the development of all-solid-state Li–S batteries, a promising approach that could fundamentally address the issue of lithium polysulfide dissolution by eliminating the use of liquid electrolytes altogether. The inherent drawbacks of Li–S batteries, such as the insulating nature of sulfur and the challenges of high sulfur loading, can be strategically addressed to pave the way for their commercialization. In doing so, Li–S batteries offer a clear pathway beyond the limitations of conventional lithium-ion batteries, making them a highly attractive option for applications requiring high gravimetric and volumetric energy densities.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
juanjuan发布了新的文献求助10
2秒前
tianxiong发布了新的文献求助30
4秒前
所所应助点点采纳,获得10
5秒前
6秒前
shuang完成签到 ,获得积分10
6秒前
麦克发布了新的文献求助10
10秒前
wyz完成签到,获得积分10
10秒前
Iris完成签到 ,获得积分10
11秒前
111完成签到 ,获得积分10
12秒前
13秒前
juanjuan完成签到,获得积分20
15秒前
wyz发布了新的文献求助10
16秒前
wddfz发布了新的文献求助10
17秒前
18秒前
今后应助科研通管家采纳,获得10
21秒前
21秒前
wzzznh完成签到 ,获得积分10
21秒前
26秒前
Danish完成签到,获得积分10
27秒前
王木木完成签到 ,获得积分10
30秒前
liuliuliu发布了新的文献求助10
31秒前
Fin2046发布了新的文献求助10
31秒前
Berthe完成签到 ,获得积分10
32秒前
33秒前
34秒前
天天快乐应助gyh采纳,获得10
36秒前
37秒前
halo发布了新的文献求助10
39秒前
科研通AI2S应助momo采纳,获得10
40秒前
吃嗯发布了新的文献求助10
41秒前
希望天下0贩的0应助Fin2046采纳,获得10
45秒前
47秒前
48秒前
邀我赴庸尘完成签到,获得积分10
49秒前
49秒前
暖冬22完成签到,获得积分10
52秒前
无奈发布了新的文献求助30
53秒前
5易6完成签到 ,获得积分10
54秒前
缥缈纲发布了新的文献求助10
56秒前
小蘑菇应助小琼琼采纳,获得10
56秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778969
求助须知:如何正确求助?哪些是违规求助? 3324680
关于积分的说明 10219180
捐赠科研通 3039653
什么是DOI,文献DOI怎么找? 1668358
邀请新用户注册赠送积分活动 798646
科研通“疑难数据库(出版商)”最低求助积分说明 758467