Data-driven design of novel lightweight refractory high-entropy alloys with superb hardness and corrosion resistance

腐蚀 耐火材料(行星科学) 高熵合金 材料科学 冶金 合金
作者
Tianchuang Gao,Jianbao Gao,Shenglan Yang,Lijun Zhang
出处
期刊:npj computational materials [Nature Portfolio]
卷期号:10 (1) 被引量:12
标识
DOI:10.1038/s41524-024-01457-6
摘要

Abstract Lightweight refractory high-entropy alloys (LW-RHEAs) hold significant potential in the fields of aviation, aerospace, and nuclear energy due to their low density, high strength, high hardness, and corrosion resistance. However, the enormous composition space has severely hindered the development of novel LW-RHEAs with excellent comprehensive performance. In this paper, an machine learning (ML)-based alloy design strategy combined with a multi-objective optimization method was proposed and applied for a rational design of Al-Nb-Ti-V-Zr-Cr-Mo-Hf LW-RHEAs. The quantitative relation of “composition-structure-property” was first established by ML modeling. Then, feature analysis reveals that Cr content greater than 12 at.% is a key criterion for alloys with high corrosion resistance. The phase structure, density, melting point, hardness and corrosion resistance of the alloys were screened layer by layer, and finally, three LW-RHEAs with superb hard and corrosion resistance were successfully designed. Key experimental validation indicates that three target alloys have densities around 6.5 g/cm 3 , and all alloys are disordered bcc_A2 single-phase with the highest hardness of 593 HV and the largest pitting potential of 2.5 V SCE , which far exceeds all the literature reports. The successful demonstration in this paper clearly demonstrates that the present design strategy driven by the ML technique should be generally applicable to other RHEA systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Lio发布了新的文献求助10
1秒前
Jasper应助科研通管家采纳,获得10
2秒前
李健应助科研通管家采纳,获得10
2秒前
浮游应助科研通管家采纳,获得10
2秒前
华仔应助科研通管家采纳,获得10
2秒前
科研通AI5应助科研通管家采纳,获得10
2秒前
ephore应助科研通管家采纳,获得30
2秒前
2秒前
香蕉觅云应助科研通管家采纳,获得10
2秒前
求大佬帮助完成签到,获得积分10
3秒前
10秒前
Giao发布了新的文献求助10
13秒前
xhy完成签到 ,获得积分10
16秒前
16秒前
18秒前
ZNX发布了新的文献求助10
19秒前
我爱陶子完成签到 ,获得积分10
21秒前
24秒前
黄汉良发布了新的文献求助10
24秒前
馆长完成签到,获得积分0
25秒前
LNULZY发布了新的文献求助10
29秒前
wyling完成签到,获得积分10
32秒前
学术八戒完成签到 ,获得积分10
34秒前
dddddddd完成签到,获得积分10
35秒前
36秒前
dddddddd发布了新的文献求助10
38秒前
xixi完成签到,获得积分10
40秒前
42秒前
黄汉良发布了新的文献求助10
43秒前
小蘑菇应助机灵的小蘑菇采纳,获得10
43秒前
张龙珑发布了新的文献求助10
47秒前
48秒前
FashionBoy应助无奈母鸡采纳,获得10
50秒前
50秒前
ZJNULI发布了新的文献求助10
54秒前
今北完成签到,获得积分10
56秒前
58秒前
58秒前
key发布了新的文献求助10
1分钟前
阿玖完成签到 ,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Beauty and Innovation in La Machine Chinoise: Falla, Debussy, Ravel, Roussel 1000
Rapid Review of Electrodiagnostic and Neuromuscular Medicine: A Must-Have Reference for Neurologists and Physiatrists 1000
An overview of orchard cover crop management 800
基于3um sOl硅光平台的集成发射芯片关键器件研究 500
Educational Research: Planning, Conducting, and Evaluating Quantitative and Qualitative Research 460
National standards & grade-level outcomes for K-12 physical education 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4803768
求助须知:如何正确求助?哪些是违规求助? 4120738
关于积分的说明 12749241
捐赠科研通 3853526
什么是DOI,文献DOI怎么找? 2122291
邀请新用户注册赠送积分活动 1144392
关于科研通互助平台的介绍 1035252