Gated-STGFormer: Spatiotemporal Fusion Network for Reconstructing Aortic Valve Motion Within Coronary Presence

作者
Peng Shu,Rui Lv,Lingqi Kong
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:29 (12): 8623-8630
标识
DOI:10.1109/jbhi.2025.3611504
摘要

Accurately predicting aortic valve movement under coronary influence is critical for personalized cardiac interventions and virtual surgery planning. Conventional Fluid-Structure Interaction (FSI) models tend to neglect modeling coronary arteries due to their complexities, leading to bias in leaflet motion simulations. To overcome this limitation, we propose a combination of spatiotemporal graph convolution and Transformer based gated (Gated-STGFormer) deep learning framework, which learns to reconstruct coronary-modulated leaflet motion from simulations without explicit coronary arteries. The framework integrates Graph Convolutional Networks (GCNs) for spatial dependency modeling and Transformer for temporal dependency, with both encoding and gating mechanisms to effectively capture spatiotemporal couplings. Quantitative evaluation demonstrated that it reproduces the spatiotemporal movements of leaflets under the coronary arteries with a high degree of fidelity. By addressing anatomical simplifications in conventional simulations, this method provides a physics-informed and computationally efficient surrogate model with strong clinical applicability. Our findings suggest that the Gated-STGFormer effectively incorporates spatiotemporal modal information, and can serve as a module for coronary artery compensation in a preoperative planning system, enabling more realistic and personalized valve biomechanical simulations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
混沌完成签到,获得积分10
刚刚
搬搬搬搬搬搬搬哪个啊完成签到,获得积分10
刚刚
1秒前
HAHA完成签到,获得积分10
1秒前
1秒前
123发布了新的文献求助10
2秒前
司康完成签到,获得积分10
2秒前
2秒前
Selena完成签到,获得积分10
2秒前
karyoter完成签到,获得积分10
2秒前
林林林完成签到,获得积分10
3秒前
4秒前
4秒前
陈七完成签到,获得积分10
4秒前
5秒前
王志杰发布了新的文献求助10
5秒前
桐桐应助乳酸菌采纳,获得10
5秒前
HonS完成签到,获得积分10
5秒前
tanzbd发布了新的文献求助10
6秒前
独孤刘完成签到,获得积分10
6秒前
科研一坤年完成签到,获得积分10
6秒前
bulabulabu完成签到,获得积分10
6秒前
舒心迎蕾发布了新的文献求助10
6秒前
Jared应助先锋老刘001采纳,获得10
7秒前
replica发布了新的文献求助10
7秒前
Sandjames1889完成签到,获得积分10
8秒前
momo应助WL采纳,获得10
8秒前
huzhu123发布了新的文献求助10
9秒前
打打应助LL采纳,获得10
9秒前
sun完成签到 ,获得积分10
9秒前
9秒前
明理的笑柳应助HAHA采纳,获得10
9秒前
10秒前
不喜发布了新的文献求助10
10秒前
10秒前
脑洞疼应助哈哈哈采纳,获得10
11秒前
SciGPT应助纳斯达克采纳,获得10
11秒前
量子星尘发布了新的文献求助10
12秒前
yyq617569158发布了新的文献求助10
12秒前
Maoxian完成签到,获得积分10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5555764
求助须知:如何正确求助?哪些是违规求助? 4640521
关于积分的说明 14660931
捐赠科研通 4582366
什么是DOI,文献DOI怎么找? 2513432
邀请新用户注册赠送积分活动 1487963
关于科研通互助平台的介绍 1458952