材料科学
明胶
自愈水凝胶
3D打印
生物相容性
3d打印
生物医学工程
数字光处理
组织工程
聚氨酯
纳米技术
复合材料
高分子化学
计算机科学
化学
投影机
冶金
计算机视觉
医学
生物化学
作者
Qian-Pu Cheng,Shan‐hui Hsu
标识
DOI:10.1016/j.actbio.2023.04.023
摘要
Three-dimensional (3D) printing of soft biomaterials facilitates the progress of personalized medicine. The development for different forms of 3D-printable biomaterials can promotes the potential manufacturing for artificial organs and provides biomaterials with the required properties. In this study, gelatin methacryloyl (GelMA) and dialdehyde-functionalized polyurethane (DFPU) were combined to create a double crosslinking system and develop 3D-printable GelMA-PU biodegradable hydrogel and cryogel. The GelMA-PU system demonstrates a combination of self-healing ability and 3D printability and provides two distinct forms of 3D-printable biomaterials with smart functions, high printing resolution, and biocompatibility. The hydrogel was printed into individual modules through an 80 µm or larger nozzle and further assembled into complex structures through adhesive and self-healing abilities, which could be stabilized by secondary photocrosslinking. The 3D-printed hydrogel was adhesive, light transmittable, and could embed a light emitting diode (LED). Furthermore, the hydrogel laden with human mesenchymal stem cells (hMSCs) was successfully printed and showed cell proliferation. Meanwhile, 3D-printed cryogel was achieved by printing on a subzero temperature platform through a 210 µm nozzle. After secondary photocrosslinking and drying, the cryogel was deliverable through a 16-gage (1194 µm) syringe needle and can promote the proliferation of hMSCs. The GelMA-PU system extends the ink pool for 3D printing of biomaterials and has potential applications in tissue engineering scaffolds, minimally invasive surgery devices, and electronic wound dressings. The 3D-printable biomaterials developed in this work are GelMA-based ink with smart funcitons and have potentials for various customized medical applications. The synthesized GelMA-polyurethane double network hydrogel can be 3D-printed into individual modules (e.g., 11 × 11 × 5 mm3) through an 80 μm or larger size nozzle, which are then assembled into a taller structure over five times of the initial height by self-healing and secondary photocrosslinking. The hydrogel is adhesive, light transmittable, and biocompatible that can either carry human mesenchymal stem cells (hMSCs) as bioink or embed a red light LED (620 nm) with potential applications in electronic skin dressing. Meanwhile, the 3D-printed highly compressible cryogel (e.g., 6 × 6 × 1 mm3) is deliverable by a 16-gage (1194 μm) syringe needle and supports the proliferation of hMSCs also.
科研通智能强力驱动
Strongly Powered by AbleSci AI