Uncertainty‐aware structural damage warning system using deep variational composite neural networks

结构健康监测 预警系统 计算机科学 深度学习 卷积神经网络 预警系统 人工神经网络 自编码 人工智能 推论 编码(集合论) 机器学习 数据挖掘 工程类 结构工程 电信 集合(抽象数据类型) 程序设计语言
作者
Kareem Eltouny,Xiao Liang
出处
期刊:Earthquake Engineering & Structural Dynamics [Wiley]
卷期号:52 (11): 3345-3368 被引量:5
标识
DOI:10.1002/eqe.3892
摘要

Abstract Structural health monitoring (SHM) is, without a doubt, one of the most important assets for building resilient communities. The vast and rapidly advancing research in data science and machine learning has provided researchers in the civil engineering community with various tools that can facilitate the processing of significant amounts of gathered data. However, deep learning models are prone to mistakes, and with the catastrophic consequences that can happen due to damage misidentification, damage diagnosis models’ predictions should not be taken for granted. In this study, we present an uncertainty‐aware early‐warning system that can provide near real‐time SHM. The system utilizes a deep composite encoder‐decoder network that combines elements from convolutional neural networks, recurrent neural networks, and variational inference (VI) to provide damage index distributions. The framework can detect anomalies in the structural system during seismic events and provide a measure of uncertainty that can be used to question the model's predictions. To assess the system's validity and practicality, we apply our proposal to three real structures, two of which suffered damage during the 1994 Northridge earthquake. We found that the early warning system delivers an accurate, yet cautious, continuous monitoring that is capable of sending warning signals when damage occurs in the course of seismic events. Source code is available at: https://github.com/keltouny/VSCAN .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
跑在颖完成签到,获得积分20
1秒前
尉迟剑心发布了新的文献求助20
3秒前
jml完成签到,获得积分10
3秒前
chen应助姚进步采纳,获得10
3秒前
kiska发布了新的文献求助10
4秒前
JamesPei应助lanfer采纳,获得10
5秒前
樊丽彤完成签到,获得积分10
5秒前
小琦无敌发布了新的文献求助10
5秒前
6秒前
6秒前
Shirley完成签到 ,获得积分10
10秒前
樊丽彤发布了新的文献求助10
12秒前
可可发布了新的文献求助10
12秒前
坦率的匪应助低温少年采纳,获得10
12秒前
Owen应助敬老院N号采纳,获得10
13秒前
善学以致用应助敬老院N号采纳,获得10
13秒前
情怀应助敬老院N号采纳,获得10
13秒前
Ava应助忧伤的尔白采纳,获得10
13秒前
乐乐应助敬老院N号采纳,获得10
13秒前
甜蜜的楷瑞应助yyyq采纳,获得10
13秒前
平常的狗完成签到,获得积分10
13秒前
Tracy关注了科研通微信公众号
13秒前
小白应助123采纳,获得10
14秒前
吉羿完成签到,获得积分20
14秒前
14秒前
14秒前
zhn0607发布了新的文献求助10
15秒前
Jane完成签到,获得积分10
16秒前
17秒前
17秒前
论文侠发布了新的文献求助10
17秒前
18秒前
19秒前
19秒前
20秒前
姿姿发布了新的文献求助10
20秒前
论文侠完成签到,获得积分10
21秒前
Kal发布了新的文献求助10
21秒前
可耐的汲发布了新的文献求助10
22秒前
22秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 500
Maritime Applications of Prolonged Casualty Care: Drowning and Hypothermia on an Amphibious Warship 500
Comparison analysis of Apple face ID in iPad Pro 13” with first use of metasurfaces for diffraction vs. iPhone 16 Pro 500
Towards a $2B optical metasurfaces opportunity by 2029: a cornerstone for augmented reality, an incremental innovation for imaging (YINTR24441) 500
Robot-supported joining of reinforcement textiles with one-sided sewing heads 490
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 460
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4063478
求助须知:如何正确求助?哪些是违规求助? 3601886
关于积分的说明 11439256
捐赠科研通 3324970
什么是DOI,文献DOI怎么找? 1827936
邀请新用户注册赠送积分活动 898422
科研通“疑难数据库(出版商)”最低求助积分说明 819026