The use of artificial intelligence and big data for the safety evaluation of US food-relevant chemicals

食品安全 农药残留 食品添加剂 危害分析 食品接触材料 暴露评估 危险分析和关键控制点 代理(哲学) 杀虫剂 业务 食品包装 化学 食品科学 工程类 环境卫生 生物 医学 认识论 哲学 航空航天工程 农学
作者
Yuqi Fu,Thomas Luechtefeld,Agnes L. Karmaus,Thomas Härtung
出处
期刊:Elsevier eBooks [Elsevier]
卷期号:: 575-589 被引量:2
标识
DOI:10.1016/b978-0-12-819470-6.00061-5
摘要

Environmental contaminants, naturally occurring toxicants, pesticide residues, and food additives are the four chemical-associated categories of six for food safety established by the Food and Drug Administration. The direct food additives, which are intentionally added to food, are the main focus of this case study, and the indirect food additives, such as pesticides, natural toxicants, and environmental residues will also be discussed. This study is attempting to investigate how artificial intelligence tools developed using big data could support the hazard evaluation of food additives. Automated read-across technology, that is, the read-across-based structure activity relationships (RASAR) tool, was utilized to generate predictions, which were compared with traditional animal testing methods to assess utility for providing estimates of chemical toxicity for food-relevant substances. This was conducted using Underwriters Laboratories (UL) Cheminformatics Tool Kit followed by descriptive statistics and performance-based validation with datasets retrieved from sources such as the European Chemicals Agency, the US Environmental Protection Agency, the Occupational Safety and Health Administration, the European Food Safety Authority, and other literature. In our analysis, the main findings indicate that more direct food additives than indirect food additives are in the training data and there were more non-toxicants than toxicants, which was expected for food-related substances. Most results were at “very strong” and “strong” reliability level. For 123 cases, where classifications could be retrieved from other sources for a preliminary validation, 83% of the RASAR results matched with the toxicological assessment results confirming that in silico tools can robustly generate predictions for informing on the potential of food-use chemical toxicity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
wyy完成签到,获得积分10
1秒前
1秒前
自然访彤发布了新的文献求助10
4秒前
Yun yun发布了新的文献求助10
4秒前
临澈发布了新的文献求助10
5秒前
活泼的惜儿完成签到 ,获得积分10
6秒前
JamesPei应助退堂鼓大王采纳,获得10
6秒前
遛遛发布了新的文献求助10
7秒前
肚皮完成签到 ,获得积分0
7秒前
9秒前
9秒前
10秒前
浮游应助甜蜜的若南采纳,获得10
11秒前
哈基米德应助临澈采纳,获得20
11秒前
未来的幻想完成签到,获得积分10
12秒前
乐观乐枫完成签到 ,获得积分10
13秒前
星辰大海应助Yun yun采纳,获得10
15秒前
十一发布了新的文献求助10
17秒前
科目三应助缓慢怜翠采纳,获得10
17秒前
wQ1ng应助lqtnb采纳,获得10
17秒前
17秒前
WLX001完成签到 ,获得积分10
20秒前
20秒前
JPH1990发布了新的文献求助10
21秒前
Orange应助猪猪hero采纳,获得10
21秒前
搞什么搞完成签到,获得积分10
22秒前
22秒前
lxx发布了新的文献求助150
22秒前
周周发布了新的文献求助10
22秒前
22秒前
23秒前
WJP发布了新的文献求助10
24秒前
Ava应助wop111采纳,获得10
24秒前
xiaodong完成签到,获得积分10
24秒前
zhangxin发布了新的文献求助10
24秒前
24秒前
王jyk发布了新的文献求助10
25秒前
777发布了新的文献求助10
25秒前
26秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5208817
求助须知:如何正确求助?哪些是违规求助? 4386099
关于积分的说明 13660012
捐赠科研通 4245182
什么是DOI,文献DOI怎么找? 2329154
邀请新用户注册赠送积分活动 1326960
关于科研通互助平台的介绍 1279228