亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Machine Learning Techniques for Evaluating Concrete Strength with Waste Marble Powder

抗弯强度 抗压强度 支持向量机 相关系数 克里金 材料科学 线性回归 高斯过程 计算机科学 高斯分布 数学 机器学习 复合材料 物理 量子力学
作者
Nitisha Sharma,Mohindra Singh Thakur,Parveen Sihag,Mohammad Abdul Malik,Raj Kumar,Mohamed Abbas,C. Ahamed Saleel
出处
期刊:Materials [MDPI AG]
卷期号:15 (17): 5811-5811 被引量:29
标识
DOI:10.3390/ma15175811
摘要

The purpose of the research is to predict the compressive and flexural strengths of the concrete mix by using waste marble powder as a partial replacement of cement and sand, based on the experimental data that was acquired from the laboratory tests. In order to accomplish the goal, the models of Support vector machines, Support vector machines with bagging and Stochastic, Linear regression, and Gaussian processes were applied to the experimental data for predicting the compressive and flexural strength of concrete. The effectiveness of models was also evaluated by using statistical criteria. Therefore, it can be inferred that the gaussian process and support vector machine methods can be used to predict the respective outputs, i.e., flexural and compressive strength. The Gaussian process and Support vector machines Stochastic predicts better outcomes for flexural and compressive strength because it has a higher coefficient of correlation (0.8235 and 0.9462), lower mean absolute and root mean squared error values as (2.2808 and 1.8104) and (2.8527 and 2.3430), respectively. Results suggest that all applied techniques are reliable for predicting the compressive and flexural strength of concrete and are able to reduce the experimental work time. In comparison to input factors for this data set, the number of curing days followed by the CA, C, FA, w, and MP is essential in predicting the flexural and compressive strength of a concrete mix for this data set.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
7秒前
11秒前
14秒前
17秒前
chenlc971125完成签到 ,获得积分10
19秒前
39秒前
45秒前
loitinsuen完成签到,获得积分10
54秒前
56秒前
在水一方应助me采纳,获得10
1分钟前
1分钟前
1分钟前
默默的板栗完成签到,获得积分10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
1分钟前
外向的妍完成签到,获得积分10
1分钟前
走啊走应助绝世高手采纳,获得30
1分钟前
雪白的听寒完成签到 ,获得积分10
1分钟前
慕青应助简单的凡儿采纳,获得10
1分钟前
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
脑洞疼应助科研通管家采纳,获得10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
曦耀发布了新的文献求助20
3分钟前
黄嘉慧完成签到 ,获得积分10
3分钟前
MGraceLi_sci完成签到,获得积分10
3分钟前
所所应助zhanghua采纳,获得10
3分钟前
4分钟前
兆兆完成签到 ,获得积分10
4分钟前
zhanghua发布了新的文献求助10
4分钟前
4分钟前
小马甲应助dddhhhqqq采纳,获得10
4分钟前
zhanghua完成签到,获得积分10
4分钟前
4分钟前
Yuan完成签到,获得积分10
4分钟前
sci发布了新的文献求助10
4分钟前
虚心涵山完成签到 ,获得积分10
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Theoretical modelling of unbonded flexible pipe cross-sections 3000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Minimizing the Effects of Phase Quantization Errors in an Electronically Scanned Array 1000
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5534236
求助须知:如何正确求助?哪些是违规求助? 4622306
关于积分的说明 14582465
捐赠科研通 4562539
什么是DOI,文献DOI怎么找? 2500214
邀请新用户注册赠送积分活动 1479786
关于科研通互助平台的介绍 1450924