已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

CasA: A Cascade Attention Network for 3-D Object Detection From LiDAR Point Clouds

级联 点云 计算机科学 激光雷达 目标检测 人工智能 探测器 卷积神经网络 对象(语法) 计算机视觉 模式识别(心理学) 遥感 工程类 地质学 化学工程 电信
作者
Hai Wu,Jinhao Deng,Chenglu Wen,Xin Li,Cheng Wang,Jonathan Li
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:60: 1-11 被引量:60
标识
DOI:10.1109/tgrs.2022.3203163
摘要

3D object detection from LiDAR point clouds has gained great attention in recent years due to its wide applications in smart cities and autonomous driving. Cascade framework shows its advancement in 2D object detection but is less investigated in 3D space. Conventional cascade structures use multiple separate sub-networks to sequentially refine region proposals. Such methods, however, have limited ability to measure proposal quality in all stages, and hard to achieve a desirable performance improvement in 3D space. This paper proposes a new cascade framework, termed CasA, for 3D object detection from LiDAR point clouds. CasA consists of a Region Proposal Network (RPN) and a Cascade Refinement Network (CRN). In CRN, we designed a new Cascade Attention Module that uses multiple sub-networks and attention modules to aggregate the object features from different stages and progressively refine region proposals. CasA can be integrated into various two-stage 3D detectors and improve their performance. Extensive experiments on KITTI and Waymo datasets with various baseline detectors demonstrate the universality and superiority of our CasA. In particular, based on one variant of Voxel-RCNN, we achieve state-of-the-art results on the KITTI dataset. On the KITTI online 3D object detection leaderboard, we achieve a high detection performance of 83.06%, 47.09%, and 73.47% Average Precision (AP) in the moderate Car, Pedestrian, and Cyclist classes, respectively. Code is available at https://github.com/hailanyi/CasA.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
完美世界应助嗯嗯采纳,获得10
3秒前
3秒前
脆条完成签到,获得积分10
4秒前
桐桐应助万万陈陈采纳,获得10
4秒前
5秒前
百合花开完成签到,获得积分10
5秒前
坤坤完成签到,获得积分10
6秒前
8秒前
wzhang完成签到,获得积分10
9秒前
罗健完成签到 ,获得积分10
10秒前
898809687发布了新的文献求助10
10秒前
无谓发布了新的文献求助10
12秒前
cyz完成签到,获得积分20
13秒前
aalli完成签到 ,获得积分10
14秒前
温暖的胳肢窝完成签到,获得积分10
16秒前
科研通AI5应助去吧海燕采纳,获得30
16秒前
大个应助NZH采纳,获得10
16秒前
思源应助忧郁绣连采纳,获得10
16秒前
18秒前
18秒前
SYLH应助jlwang采纳,获得10
19秒前
桐桐应助朱先生采纳,获得10
20秒前
彭于晏应助t12s2365_采纳,获得10
21秒前
善学以致用应助无谓采纳,获得10
21秒前
小马甲应助科研通管家采纳,获得50
22秒前
科目三应助科研通管家采纳,获得10
22秒前
zho应助科研通管家采纳,获得10
22秒前
脑洞疼应助科研通管家采纳,获得10
23秒前
田様应助科研通管家采纳,获得10
23秒前
星辰大海应助科研通管家采纳,获得10
23秒前
23秒前
华仔应助科研通管家采纳,获得30
23秒前
23秒前
23秒前
传奇3应助科研通管家采纳,获得10
23秒前
Hello应助科研通管家采纳,获得10
23秒前
StayGolDay完成签到 ,获得积分10
23秒前
dong发布了新的文献求助10
24秒前
爆米花应助虚幻采枫采纳,获得10
25秒前
大模型应助猪猪hero采纳,获得10
25秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3803841
求助须知:如何正确求助?哪些是违规求助? 3348632
关于积分的说明 10339665
捐赠科研通 3064787
什么是DOI,文献DOI怎么找? 1682776
邀请新用户注册赠送积分活动 808429
科研通“疑难数据库(出版商)”最低求助积分说明 764096