亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Deep Learning to Predict Geographic Atrophy Area and Growth Rate from Multimodal Imaging

置信区间 医学 协变量 地理萎缩 眼科 临床试验 核医学 统计 内科学 黄斑变性 数学
作者
Neha Anegondi,Simon S. Gao,Verena Steffen,Richard F. Spaide,Srinivas R. Sadda,Frank G. Holz,Christina Rabe,Lee Honigberg,Elizabeth M. Newton,Julia Cluceru,Michael Kawczynski,Thomas Bengtsson,Daniela Ferrara,Qi Yang
出处
期刊:Ophthalmology Retina [Elsevier BV]
卷期号:7 (3): 243-252 被引量:29
标识
DOI:10.1016/j.oret.2022.08.018
摘要

To develop deep learning models for annualized geographic atrophy (GA) growth rate prediction using fundus autofluorescence (FAF) images and spectral-domain OCT volumes from baseline visits, which can be used for prognostic covariate adjustment to increase power of clinical trials.This retrospective analysis estimated GA growth rate as the slope of a linear fit on all available measurements of lesion area over a 2-year period. Three multitask deep learning models-FAF-only, OCT-only, and multimodal (FAF and OCT)-were developed to predict concurrent GA area and annualized growth rate.Patients were from prospective and observational lampalizumab clinical trials.The 3 models were trained on the development data set, tested on the holdout set, and further evaluated on the independent test sets. Baseline FAF images and OCT volumes from study eyes of patients with bilateral GA (NCT02247479; NCT02247531; and NCT02479386) were split into development (1279 patients/eyes) and holdout (443 patients/eyes) sets. Baseline FAF images from study eyes of NCT01229215 (106 patients/eyes) and NCT02399072 (169 patients/eyes) were used as independent test sets.Model performance was evaluated using squared Pearson correlation coefficient (r2) between observed and predicted lesion areas/growth rates. Confidence intervals were calculated by bootstrap resampling (B = 10 000).On the holdout data set, r2 (95% confidence interval) of the FAF-only, OCT-only, and multimodal models for GA lesion area prediction was 0.96 (0.95-0.97), 0.91 (0.87-0.95), and 0.94 (0.92-0.96), respectively, and for GA growth rate prediction was 0.48 (0.41-0.55), 0.36 (0.29-0.43), and 0.47 (0.40-0.54), respectively. On the 2 independent test sets, r2 of the FAF-only model for GA lesion area was 0.98 (0.97-0.99) and 0.95 (0.93-0.96), and for GA growth rate was 0.65 (0.52-0.75) and 0.47 (0.34-0.60).We show the feasibility of using baseline FAF images and OCT volumes to predict individual GA area and growth rates using a multitask deep learning approach. The deep learning-based growth rate predictions could be used for covariate adjustment to increase power of clinical trials.Proprietary or commercial disclosure may be found after the references.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
6秒前
隐形曼青应助四月天采纳,获得10
12秒前
芬芬发布了新的文献求助10
13秒前
15秒前
cheezburger发布了新的文献求助10
20秒前
20秒前
可靠的老鼠完成签到,获得积分10
21秒前
范振杰发布了新的文献求助10
25秒前
cheezburger完成签到,获得积分10
26秒前
恒温失效关注了科研通微信公众号
28秒前
29秒前
绝尘发布了新的文献求助20
29秒前
英俊的铭应助cnbhhhhh采纳,获得10
31秒前
四月天发布了新的文献求助10
33秒前
斯寜应助绝尘采纳,获得10
37秒前
科研通AI2S应助younger采纳,获得10
40秒前
41秒前
科研通AI2S应助范振杰采纳,获得10
43秒前
44秒前
卡琳完成签到 ,获得积分10
44秒前
45秒前
四月天完成签到,获得积分20
45秒前
恒温失效发布了新的文献求助10
46秒前
48秒前
51秒前
yaoyh_gc发布了新的文献求助10
53秒前
zheng完成签到 ,获得积分10
54秒前
55秒前
wackykao完成签到,获得积分10
56秒前
WXT发布了新的文献求助10
1分钟前
1分钟前
范振杰完成签到,获得积分10
1分钟前
shimhjy应助dorsun90采纳,获得20
1分钟前
WXT完成签到,获得积分10
1分钟前
斯文的访烟完成签到,获得积分10
1分钟前
繁荣的青旋完成签到,获得积分10
1分钟前
两到三个字符完成签到,获得积分10
1分钟前
1分钟前
SASI完成签到 ,获得积分10
1分钟前
阿秋秋秋完成签到 ,获得积分10
1分钟前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3800880
求助须知:如何正确求助?哪些是违规求助? 3346424
关于积分的说明 10329241
捐赠科研通 3062881
什么是DOI,文献DOI怎么找? 1681222
邀请新用户注册赠送积分活动 807463
科研通“疑难数据库(出版商)”最低求助积分说明 763702