BDR6D: Bidirectional Deep Residual Fusion Network for 6D Pose Estimation

人工智能 计算机视觉 点云 RGB颜色模型 姿势 计算机科学 特征提取 特征(语言学) 卷积神经网络 残余物 模式识别(心理学) 算法 哲学 语言学
作者
Penglei Liu,Qieshi Zhang,Jun Cheng
出处
期刊:IEEE Transactions on Automation Science and Engineering [Institute of Electrical and Electronics Engineers]
卷期号:21 (2): 1793-1804 被引量:10
标识
DOI:10.1109/tase.2023.3248843
摘要

Six-dimensional (6D) pose estimation is an important branch in the field of robotics focused on enhancing the ability of robots to manipulate and grasp objects. The latest research trend in 6D pose estimation is to directly predict the positions of two-dimensional (2D) keypoints from a single red, green, and blue (RGB) image through convolutional neural networks (CNNs) and establish a corresponding relationship with the three-dimensional (3D) keypoints of the model. Then, the perspective-n-point (PnP) algorithm is used to recover the 6D pose parameters. Currently, two challenges are encountered in pose estimation based on an RGB image. On the one hand, an RGB image lacks depth information, and it is thus difficult to directly obtain the corresponding geometric object information. On the other hand, when depth information is available, it is difficult to efficiently fuse the features of the RGB image with the features of the corresponding depth image. In this paper, we propose a bidirectional depth residual fusion network with a depth prediction (DP) network to estimate the 6D poses of objects (BDR6D). The BDR6D network predicts the depth information of objects using an RGB image, converts the depth information into point cloud information, and performs feature extraction and representation together with the RGB information during the feature extraction and representation stages. Specifically, the RGB image is fed into the BDR6D network, the DP network predicts the depth information of the objects in the image, and the depth map and RGB image are input into a point cloud network (PCN) and CNN, respectively, for feature extraction and representation. We build the bidirectional depth residual (BDR) structure so that the CNN and PCN can share information during feature extraction and representation. This approach allows the two networks to use each other's local and global information to improve feature extraction and representation. For the keypoint selection stage, we propose an effective 2D keypoint selection method that considers the appearance and geometric information of the object of interest. We evaluate the proposed method with three benchmark datasets and compare it with other 6D pose estimation algorithms. The experimental results show that our method outperforms the state-of-the-art approach. Finally, we deploy our proposed method in conjunction with the Universal Robots 5 manipulator (UR5) robot to grasp and manipulate objects. Note to Practitioners —The purpose of this paper is to solve the problem of 6D pose estimation for robot grasping. The existing RGB image-based pose estimation approach faces two challenges. On the one hand, a single RGB image lacks depth information, so that it is difficult to directly obtain the corresponding geometric object information. On the other hand, when depth information is available, it is difficult to efficiently fuse the features of the RGB image with the features of the corresponding depth image. To solve the above problems, a novel network that can predict the depth information of objects from an RGB image and fuse the depth information with the RGB information to estimate the 6D pose of objects is proposed. Furthermore, we propose an effective 2D keypoint selection method that considers the appearance and geometric information of objects of interest. We evaluate the proposed approach based on three benchmark datasets and the UR5 robot platform and verify that our method is effective.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
6秒前
heavenhorse完成签到,获得积分10
6秒前
7秒前
vae发布了新的文献求助10
8秒前
10秒前
火箭Lucky完成签到 ,获得积分10
11秒前
张宏宇发布了新的文献求助10
11秒前
大模型应助heheha采纳,获得10
12秒前
感动水杯完成签到 ,获得积分10
12秒前
榴下晨光完成签到 ,获得积分10
14秒前
liyang999完成签到,获得积分10
16秒前
ponysmile发布了新的文献求助10
16秒前
研友_Y59785应助激情的乌龟采纳,获得10
17秒前
加油完成签到 ,获得积分10
21秒前
幽默的小之完成签到,获得积分10
22秒前
吃不胖的完成签到 ,获得积分10
24秒前
cjjwei完成签到 ,获得积分10
24秒前
流沙无言完成签到 ,获得积分10
29秒前
Zhangfu完成签到,获得积分10
30秒前
31秒前
赵田完成签到 ,获得积分10
33秒前
科研通AI5应助ponysmile采纳,获得10
33秒前
秦淮发布了新的文献求助10
35秒前
科研通AI2S应助甜甜的难敌采纳,获得10
37秒前
37秒前
激昂的向珊完成签到,获得积分10
37秒前
害羞便当发布了新的文献求助10
41秒前
ricown完成签到,获得积分10
42秒前
秦淮完成签到,获得积分20
42秒前
王文静完成签到,获得积分10
43秒前
科目三应助vae采纳,获得10
43秒前
科研通AI5应助科研通管家采纳,获得10
43秒前
汉堡包应助科研通管家采纳,获得10
43秒前
Gauss应助科研通管家采纳,获得30
43秒前
充电宝应助科研通管家采纳,获得10
43秒前
汉堡包应助木偶采纳,获得10
44秒前
wonwojo完成签到 ,获得积分10
45秒前
一笑奈何完成签到,获得积分10
46秒前
伶俐碧萱完成签到 ,获得积分10
47秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3779589
求助须知:如何正确求助?哪些是违规求助? 3325050
关于积分的说明 10221197
捐赠科研通 3040176
什么是DOI,文献DOI怎么找? 1668673
邀请新用户注册赠送积分活动 798729
科研通“疑难数据库(出版商)”最低求助积分说明 758535