亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Local contrastive loss with pseudo-label based self-training for semi-supervised medical image segmentation

人工智能 基本事实 分割 计算机科学 模式识别(心理学) 像素 代表(政治) 监督学习 任务(项目管理) 特征学习 机器学习 人工神经网络 管理 政治 政治学 法学 经济
作者
Krishna Chaitanya,Ertunç Erdil,Neerav Karani,Ender Konukoğlu
出处
期刊:Medical Image Analysis [Elsevier BV]
卷期号:87: 102792-102792 被引量:116
标识
DOI:10.1016/j.media.2023.102792
摘要

Supervised deep learning-based methods yield accurate results for medical image segmentation. However, they require large labeled datasets for this, and obtaining them is a laborious task that requires clinical expertise. Semi/self-supervised learning-based approaches address this limitation by exploiting unlabeled data along with limited annotated data. Recent self-supervised learning methods use contrastive loss to learn good global level representations from unlabeled images and achieve high performance in classification tasks on popular natural image datasets like ImageNet. In pixel-level prediction tasks such as segmentation, it is crucial to also learn good local level representations along with global representations to achieve better accuracy. However, the impact of the existing local contrastive loss-based methods remains limited for learning good local representations because similar and dissimilar local regions are defined based on random augmentations and spatial proximity; not based on the semantic label of local regions due to lack of large-scale expert annotations in the semi/self-supervised setting. In this paper, we propose a local contrastive loss to learn good pixel level features useful for segmentation by exploiting semantic label information obtained from pseudo-labels of unlabeled images alongside limited annotated images with ground truth (GT) labels. In particular, we define the proposed contrastive loss to encourage similar representations for the pixels that have the same pseudo-label/GT label while being dissimilar to the representation of pixels with different pseudo-label/GT label in the dataset. We perform pseudo-label based self-training and train the network by jointly optimizing the proposed contrastive loss on both labeled and unlabeled sets and segmentation loss on only the limited labeled set. We evaluated the proposed approach on three public medical datasets of cardiac and prostate anatomies, and obtain high segmentation performance with a limited labeled set of one or two 3D volumes. Extensive comparisons with the state-of-the-art semi-supervised and data augmentation methods and concurrent contrastive learning methods demonstrate the substantial improvement achieved by the proposed method. The code is made publicly available at https://github.com/krishnabits001/pseudo_label_contrastive_training.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
fly完成签到,获得积分10
5秒前
大溺完成签到 ,获得积分10
6秒前
风中的惊蛰完成签到,获得积分10
8秒前
9秒前
阿治完成签到 ,获得积分10
11秒前
华仔应助HDrinnk采纳,获得10
11秒前
再不洗洗睡就来不及了完成签到,获得积分10
12秒前
13秒前
Orange应助凉白开采纳,获得10
16秒前
19秒前
20秒前
itian发布了新的文献求助10
20秒前
20秒前
想毕业的小橙子完成签到,获得积分10
21秒前
lmk完成签到 ,获得积分10
21秒前
Alaska发布了新的文献求助10
24秒前
哇达西哇发布了新的文献求助10
24秒前
HDrinnk发布了新的文献求助10
25秒前
25秒前
clhoxvpze完成签到 ,获得积分10
27秒前
32秒前
哭泣的猕猴桃完成签到,获得积分10
35秒前
Min发布了新的文献求助30
35秒前
深情安青应助noob_采纳,获得10
36秒前
jinyu完成签到 ,获得积分10
40秒前
42秒前
43秒前
Alaska完成签到,获得积分10
44秒前
香蕉觅云应助大君哥采纳,获得10
46秒前
noob_发布了新的文献求助10
47秒前
48秒前
48秒前
48秒前
所所应助科研通管家采纳,获得10
48秒前
50秒前
domingo发布了新的文献求助10
52秒前
52秒前
55秒前
jhb发布了新的文献求助10
56秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Semantics for Latin: An Introduction 1099
Biology of the Indian Stingless Bee: Tetragonula iridipennis Smith 1000
War and Peace in the Borderlands of Myanmar: The Kachin Ceasefire, 1994-2011 800
Robot-supported joining of reinforcement textiles with one-sided sewing heads 740
2024-2030年中国石英材料行业市场竞争现状及未来趋势研判报告 500
镇江南郊八公洞林区鸟类生态位研究 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4142508
求助须知:如何正确求助?哪些是违规求助? 3678765
关于积分的说明 11627629
捐赠科研通 3372390
什么是DOI,文献DOI怎么找? 1852347
邀请新用户注册赠送积分活动 915140
科研通“疑难数据库(出版商)”最低求助积分说明 829672