Local contrastive loss with pseudo-label based self-training for semi-supervised medical image segmentation

人工智能 基本事实 分割 计算机科学 模式识别(心理学) 像素 代表(政治) 监督学习 任务(项目管理) 特征学习 机器学习 人工神经网络 管理 政治 政治学 法学 经济
作者
Krishna Chaitanya,Ertunç Erdil,Neerav Karani,Ender Konukoğlu
出处
期刊:Medical Image Analysis [Elsevier BV]
卷期号:87: 102792-102792 被引量:116
标识
DOI:10.1016/j.media.2023.102792
摘要

Supervised deep learning-based methods yield accurate results for medical image segmentation. However, they require large labeled datasets for this, and obtaining them is a laborious task that requires clinical expertise. Semi/self-supervised learning-based approaches address this limitation by exploiting unlabeled data along with limited annotated data. Recent self-supervised learning methods use contrastive loss to learn good global level representations from unlabeled images and achieve high performance in classification tasks on popular natural image datasets like ImageNet. In pixel-level prediction tasks such as segmentation, it is crucial to also learn good local level representations along with global representations to achieve better accuracy. However, the impact of the existing local contrastive loss-based methods remains limited for learning good local representations because similar and dissimilar local regions are defined based on random augmentations and spatial proximity; not based on the semantic label of local regions due to lack of large-scale expert annotations in the semi/self-supervised setting. In this paper, we propose a local contrastive loss to learn good pixel level features useful for segmentation by exploiting semantic label information obtained from pseudo-labels of unlabeled images alongside limited annotated images with ground truth (GT) labels. In particular, we define the proposed contrastive loss to encourage similar representations for the pixels that have the same pseudo-label/GT label while being dissimilar to the representation of pixels with different pseudo-label/GT label in the dataset. We perform pseudo-label based self-training and train the network by jointly optimizing the proposed contrastive loss on both labeled and unlabeled sets and segmentation loss on only the limited labeled set. We evaluated the proposed approach on three public medical datasets of cardiac and prostate anatomies, and obtain high segmentation performance with a limited labeled set of one or two 3D volumes. Extensive comparisons with the state-of-the-art semi-supervised and data augmentation methods and concurrent contrastive learning methods demonstrate the substantial improvement achieved by the proposed method. The code is made publicly available at https://github.com/krishnabits001/pseudo_label_contrastive_training.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Owen应助科研通管家采纳,获得10
刚刚
沉默的延恶完成签到,获得积分10
1秒前
1秒前
Lucas应助科研通管家采纳,获得10
1秒前
NexusExplorer应助科研通管家采纳,获得10
1秒前
隐形曼青应助科研通管家采纳,获得10
1秒前
ding应助科研通管家采纳,获得10
1秒前
Akim应助科研通管家采纳,获得10
1秒前
ZKK发布了新的文献求助10
1秒前
汉堡包应助科研通管家采纳,获得10
2秒前
子车茗应助科研通管家采纳,获得20
2秒前
隐形曼青应助科研通管家采纳,获得10
2秒前
李爱国应助科研通管家采纳,获得10
2秒前
李健应助科研通管家采纳,获得10
2秒前
SciGPT应助科研通管家采纳,获得10
2秒前
大模型应助科研通管家采纳,获得10
3秒前
彭于晏应助科研通管家采纳,获得30
3秒前
CodeCraft应助科研通管家采纳,获得10
3秒前
3秒前
Owen应助科研通管家采纳,获得10
3秒前
华仔应助ZSH采纳,获得10
3秒前
3秒前
3秒前
晴空万里应助科研通管家采纳,获得10
3秒前
爆米花应助科研通管家采纳,获得10
3秒前
胖胖胖胖应助miao采纳,获得10
3秒前
无花果应助科研通管家采纳,获得10
3秒前
田様应助科研通管家采纳,获得10
3秒前
Lucas应助科研通管家采纳,获得10
3秒前
3秒前
浮游应助科研通管家采纳,获得10
3秒前
九九发布了新的文献求助10
5秒前
5秒前
xuan发布了新的文献求助10
5秒前
天天快乐应助唐都吴彦祖采纳,获得10
6秒前
6秒前
怕黑晓亦发布了新的文献求助10
7秒前
熹微发布了新的文献求助10
7秒前
8秒前
Pprain完成签到,获得积分10
8秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
HEAT TRANSFER EQUIPMENT DESIGN Advanced Study Institute Book 500
Master Curve-Auswertungen und Untersuchung des Größeneffekts für C(T)-Proben - aktuelle Erkenntnisse zur Untersuchung des Master Curve Konzepts für ferritisches Gusseisen mit Kugelgraphit bei dynamischer Beanspruchung (Projekt MCGUSS) 500
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5113789
求助须知:如何正确求助?哪些是违规求助? 4321190
关于积分的说明 13464750
捐赠科研通 4152651
什么是DOI,文献DOI怎么找? 2275364
邀请新用户注册赠送积分活动 1277244
关于科研通互助平台的介绍 1215430