已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A theory-informed machine learning approach for cryogenic cavitation prediction

空化 人工神经网络 人工智能 物理 机器学习 过程(计算) 操作员(生物学) 计算机科学 机械 生物化学 化学 抑制因子 转录因子 基因 操作系统
作者
Jiakai Zhu,Fangtai Guo,Shiqiang Zhu,Wei Song,Tiefeng Li,Xiaobin Zhang,Jason Gu
出处
期刊:Physics of Fluids [American Institute of Physics]
卷期号:35 (3) 被引量:7
标识
DOI:10.1063/5.0142516
摘要

Inferring cryogenic cavitation features from the boundary conditions (BCs) remains a challenge due to the nonlinear thermal effects. This paper aims to build a fast model for cryogenic cavitation prediction from the BCs. Different from the traditional numerical solvers and conventional physics-informed neural networks, the approach can realize near real-time inference as the BCs change without a recalculating or retraining process. The model is based on the fusion of simple theories and neural network. It utilizes theories such as the B-factor theory to construct a physical module, quickly inferring hidden physical features from the BCs. These features represent the local and global cavitation intensity and thermal effect, which are treated as functions of location x. Then, a neural operator builds the mapping between these features and target functions (local pressure coefficient or temperature depression). The model is trained and validated based on the experimental measurements by Hord for liquid nitrogen and hydrogen. Effects of the physical module and training dataset size are investigated in terms of prediction errors. It is validated that the model can learn hidden knowledge from a small amount of experimental data and has considerable accuracy for new BCs and locations. In addition, preliminary studies show that it has the potential for cavitation prediction in unseen cryogenic liquids or over new geometries without retraining. The work highlights the potential of merging simple physical models and neural networks together for cryogenic cavitation prediction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
山山完成签到,获得积分10
刚刚
1秒前
欢呼的渊思完成签到,获得积分10
2秒前
阿文完成签到,获得积分10
3秒前
3秒前
3秒前
4秒前
wwx完成签到,获得积分20
4秒前
Owen应助哈基米采纳,获得10
4秒前
5秒前
务实梦松发布了新的文献求助10
5秒前
积极盈发布了新的文献求助10
5秒前
6秒前
6秒前
妃妃飞发布了新的文献求助10
7秒前
思源应助zslg采纳,获得10
8秒前
8秒前
尾巴完成签到 ,获得积分10
8秒前
852应助sahjdkah采纳,获得10
8秒前
西门戆戆发布了新的文献求助10
8秒前
aceppt发布了新的文献求助10
9秒前
扣子发布了新的文献求助10
10秒前
Yuantian发布了新的文献求助10
10秒前
自觉凌蝶完成签到 ,获得积分10
12秒前
renxx发布了新的文献求助10
14秒前
14秒前
关关过应助wyz采纳,获得20
15秒前
邓佳鑫Alan应助wyz采纳,获得20
15秒前
17秒前
18秒前
19秒前
20秒前
22秒前
sahjdkah发布了新的文献求助10
22秒前
23秒前
23秒前
tang发布了新的文献求助10
24秒前
LBM发布了新的文献求助10
24秒前
25秒前
25秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 25000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5705239
求助须知:如何正确求助?哪些是违规求助? 5161987
关于积分的说明 15244564
捐赠科研通 4859170
什么是DOI,文献DOI怎么找? 2607547
邀请新用户注册赠送积分活动 1558668
关于科研通互助平台的介绍 1516265