Digital Twin-Based Cyber-Attack Detection Framework for Cyber-Physical Manufacturing Systems

信息物理系统 计算机科学 网络攻击 计算机安全 工程类 操作系统
作者
Efe C. Balta,Michael Pease,James Moyne,Kira Barton,Dawn M. Tilbury
出处
期刊:IEEE Transactions on Automation Science and Engineering [Institute of Electrical and Electronics Engineers]
卷期号:21 (2): 1695-1712 被引量:38
标识
DOI:10.1109/tase.2023.3243147
摘要

Smart manufacturing (SM) systems utilize run-time data to improve productivity via intelligent decision-making and analysis mechanisms on both machine and system levels. The increased adoption of cyber-physical systems in SM leads to the comprehensive framework of cyber-physical manufacturing systems (CPMS) where data-enabled decision-making mechanisms are coupled with cyber-physical resources on the plant floor. Due to their cyber-physical nature, CPMS are susceptible to cyber-attacks that may cause harm to the manufacturing system, products, or even the human workers involved in this context. Therefore, detecting cyber-attacks efficiently and timely is a crucial step toward implementing and securing high-performance CPMS in practice. This paper addresses two key challenges to CPMS cyber-attack detection. The first challenge is distinguishing expected anomalies in the system from cyber-attacks. The second challenge is the identification of cyber-attacks during the transient response of CPMS due to closed-loop controllers. Digital twin (DT) technology emerges as a promising solution for providing additional insights into the physical process (twin) by leveraging run-time data, models, and analytics. In this work, we propose a DT framework for detecting cyber-attacks in CPMS during controlled transient behavior as well as expected anomalies of the physical process. We present a DT framework and provide details on structuring the architecture to support cyber-attack detection. Additionally, we present an experimental case study on off-the-shelf 3D printers to detect cyber-attacks utilizing the proposed DT framework to illustrate the effectiveness of our proposed approach.

Note to Practitioners—This work is motivated by developing a general-purpose and extensible digital twin-enabled cyber-attack detection framework for manufacturing systems. Existing works in the field consider specialized attack scenarios and models that may not be extensible in practical manufacturing scenarios. We utilize digital twin (DT) technology as a key enabler to develop a systematic and extensible framework where we identify the abnormality of a resource and detect if the abnormality is due to an attack or an expected anomaly. We provide several remarks on how our proposed framework can extend existing industrial control systems (ICS) and can accommodate further extensions. The presented DTs utilize data-driven machine learning models, physics-based models, and subject matter expert knowledge to perform detection and differentiation tasks in the context of expected anomalies and model-based controllers that control the manufacturing process between multiple setpoints. We utilize a model predictive controller on an off-the-shelf 3D printer to run the process, and stage anomalies and cyber-attacks that are successfully detected by the proposed framework.

最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xiaojie2024完成签到,获得积分10
刚刚
ZR14124完成签到,获得积分10
刚刚
ding应助新新采纳,获得10
刚刚
123完成签到,获得积分10
1秒前
研友_LOoomL发布了新的文献求助10
2秒前
陶醉如柏发布了新的文献求助200
2秒前
小太阳红红火火完成签到,获得积分10
2秒前
烙饼完成签到 ,获得积分10
3秒前
3秒前
xinL应助小天狼星采纳,获得10
3秒前
大知闲闲完成签到 ,获得积分10
3秒前
3秒前
令狐冲完成签到,获得积分0
4秒前
4秒前
细致且入微完成签到,获得积分10
4秒前
Jane发布了新的文献求助60
5秒前
5秒前
领导范儿应助Orochimaru采纳,获得10
6秒前
hkh完成签到,获得积分10
6秒前
6秒前
朴素的清发布了新的文献求助10
7秒前
shrimp5215完成签到,获得积分10
7秒前
flipped完成签到,获得积分10
7秒前
迅速醉冬完成签到,获得积分10
7秒前
纯真的冰蓝完成签到 ,获得积分10
7秒前
量子星尘发布了新的文献求助50
8秒前
死神发布了新的文献求助10
8秒前
鲤鱼完成签到,获得积分10
9秒前
驴小兔子完成签到,获得积分10
9秒前
learnerZ_2023完成签到,获得积分10
9秒前
Ting完成签到,获得积分10
9秒前
fannyeast完成签到,获得积分10
9秒前
Wolfe完成签到,获得积分10
9秒前
LX完成签到 ,获得积分10
9秒前
张兔兔完成签到,获得积分10
9秒前
整齐豆芽完成签到 ,获得积分10
10秒前
高高的远山完成签到,获得积分10
10秒前
方正发布了新的文献求助10
10秒前
10秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
Optimisation de cristallisation en solution de deux composés organiques en vue de leur purification 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5079983
求助须知:如何正确求助?哪些是违规求助? 4298027
关于积分的说明 13389776
捐赠科研通 4121516
什么是DOI,文献DOI怎么找? 2257145
邀请新用户注册赠送积分活动 1261455
关于科研通互助平台的介绍 1195563