A Self-Adaptive Evolutionary Multi-Task Based Constrained Multi-Objective Evolutionary Algorithm

进化算法 任务(项目管理) 计算机科学 人口 进化计算 数学优化 选择(遗传算法) 进化音乐 最优化问题 适应(眼睛) 人工智能 进化规划 机器学习 交互式进化计算 算法 数学 工程类 生物 社会学 人口学 神经科学 系统工程
作者
Kangjia Qiao,Jing Liang,Kunjie Yu,Minghui Wang,Boyang Qu,Caitong Yue,Yinan Guo
出处
期刊:IEEE transactions on emerging topics in computational intelligence [Institute of Electrical and Electronics Engineers]
卷期号:7 (4): 1098-1112 被引量:44
标识
DOI:10.1109/tetci.2023.3236633
摘要

Constrained multi-objective optimization problems (CMOPs) are difficult to solve since they involve the optimization of multiple objectives and the satisfaction of various constraints. Most constrained multi-objective evolutionary algorithms (CMOEAs) are prone to fall into the local optima due to the imbalance between objectives and constraints as well as the poor search ability of the population. To better solve CMOPs, this paper proposes a double-balanced evolutionary multi-task optimization (DBEMTO) algorithm, which evolves two populations to respectively solve the main task (CMOP) and the auxiliary task (MOP extracted from the CMOP). In DBEMTO, three evolutionary strategies are assigned to each population for offspring generation. The three evolutionary strategies include an individual transfer-based inter-task strategy and two intra-task strategies, not only utilizing the information of inter-task but also providing diverse search abilities of intra-task. Moreover, a self-adaptive scheme is developed to self-adaptively employ three strategies, so that the population can balance the information utilization of both intra-task and inter-task. Then, in the environmental selection, the performance of the three strategies is adopted to guide the sharing of the two offspring populations. Compared with several other state-of-the-art CMOEAs, DBEMTO has performed more competitively according to the final results.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2331547774完成签到,获得积分10
1秒前
Dale完成签到,获得积分10
1秒前
我就是来找文献的完成签到,获得积分10
2秒前
花卷发布了新的文献求助10
2秒前
2秒前
李爱国应助YYMM采纳,获得10
3秒前
3秒前
3秒前
4秒前
shea应助成就小懒虫采纳,获得10
4秒前
科研通AI5应助土木研学僧采纳,获得10
6秒前
打打应助梅雨季来信采纳,获得10
6秒前
111111111发布了新的文献求助30
6秒前
SYLH应助敏感的春天采纳,获得10
7秒前
7秒前
执着迎波完成签到,获得积分10
7秒前
领导范儿应助Chang采纳,获得10
8秒前
有魅力的乐双完成签到,获得积分10
8秒前
lwl完成签到,获得积分10
9秒前
宗语雪完成签到,获得积分10
9秒前
9秒前
马文完成签到,获得积分10
9秒前
zhw完成签到,获得积分10
10秒前
10秒前
清风徐来完成签到,获得积分10
11秒前
11秒前
拿铁小笼包完成签到,获得积分10
11秒前
JamesPei应助动人的凤凰采纳,获得10
11秒前
刀锋完成签到,获得积分10
11秒前
12秒前
12秒前
jason93完成签到,获得积分10
13秒前
科研通AI5应助Gsyin采纳,获得10
13秒前
14秒前
15秒前
科研菜鸡完成签到,获得积分10
15秒前
毛豆发布了新的文献求助10
17秒前
Chang完成签到,获得积分10
18秒前
18秒前
19秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Izeltabart tapatansine - AdisInsight 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3814903
求助须知:如何正确求助?哪些是违规求助? 3358983
关于积分的说明 10399256
捐赠科研通 3076557
什么是DOI,文献DOI怎么找? 1689851
邀请新用户注册赠送积分活动 813339
科研通“疑难数据库(出版商)”最低求助积分说明 767608