Development and validation of a risk prediction model for the recurrence of foot ulcer with type 2 diabetes in China: A longitudinal cohort study based on a systematic review and meta‐analysis

医学 队列 中国 内科学 队列研究 荟萃分析 2型糖尿病 糖尿病 地理 内分泌学 考古
作者
Meijun Wang,Dong Chen,Hongmin Fu,Hongmei Xu,Shannon Lin,Tiantian Ge,Qiuyue Ren,Zhenqiang Song,Min Ding,Jun Chang,Tianci Fan,Qiuling Xing,Mingyan Sun,Xuemei Li,Liming Chen,Bai Chang
出处
期刊:Diabetes-metabolism Research and Reviews [Wiley]
卷期号:39 (4) 被引量:9
标识
DOI:10.1002/dmrr.3616
摘要

Abstract Aims To develop and validate a risk prediction model for Chinese patients with type 2 diabetes with the recurrence of diabetic foot ulcers (DFUs) based on a systematic review and meta‐analysis. Methods A prospective analysis was performed with 1333 participants and followed up for 60 months. Three models were analysed using a derived cohort. The risk factors were screened using meta‐analysis and logistic regression, and the missing variables were interpolated by multiple imputation. The internal validation was performed using the bootstrap procedure, and the validation cohort was applied to the external validation. The performance of the model was evaluated in the area under the discrimination Receiver Operating Characteristic Curve (ROC). Calibration and discrimination methods were used for the validation cohort. The variables were selected according to their clinical and statistical importance to construct the nomograms. Results Three models were developed and validated. Model 1 included seven social and clinical indicators like sex, diabetes mellitus duration, previous DFU, location of ulcer, smoking, history of amputation, and foot deformity. Model 2 included four more indicators besides those in Model 1, which were statin agents used, antiplatelet agents used, systolic blood pressure, and body mass index. Model 3 added further laboratory indicators to Model 2, such as LDL‐C, HbA1C, fibrinogen, and blood urea nitrogen. In the derivation cohort, 20.1% (206/1027) participants with DFU recurred as compared to the validation cohort, which was 38.2% (117/306). The areas under the curve in the derivation cohort for Models 1–3 were 0.781 (0.744–0.817), 0.843 (0.813–0.873), and 0.899 (0.876–0.922), respectively. The Youden indexes for Models 1–3 were 0.430, 0.559, and 0.653, respectively. Model 3 showed the highest sensitivity and specificity. All models performed well for both discrimination and calibration. Conclusions Models 1–2 were non‐invasive, which indicate their role in general screening for patients at a high risk of recurrence of DFU. However, Model 3 offers a more specific screening due to its best performance in predicting the risk of DFU recurrence amongst the three models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
cathy发布了新的文献求助10
刚刚
酷波er应助彭仲康采纳,获得10
1秒前
1秒前
xys完成签到,获得积分20
2秒前
科研通AI5应助xlx采纳,获得30
2秒前
着急的青枫应助鳗鱼不尤采纳,获得10
3秒前
wen发布了新的文献求助10
5秒前
xys发布了新的文献求助10
5秒前
圆猫完成签到,获得积分10
6秒前
vincy完成签到 ,获得积分0
6秒前
8秒前
8秒前
8秒前
大胆的自行车完成签到 ,获得积分10
9秒前
11秒前
liangliang发布了新的文献求助10
14秒前
wen完成签到 ,获得积分20
16秒前
111完成签到 ,获得积分10
16秒前
科研木头人完成签到 ,获得积分0
17秒前
DenM7完成签到,获得积分10
20秒前
Miyo完成签到 ,获得积分20
21秒前
orz发布了新的文献求助10
24秒前
小黑马完成签到,获得积分10
28秒前
28秒前
12发布了新的文献求助10
28秒前
淳于汲完成签到 ,获得积分10
30秒前
科研通AI5应助害怕的小玉采纳,获得10
30秒前
cathy完成签到,获得积分10
30秒前
jarrykim完成签到,获得积分10
30秒前
zzb完成签到,获得积分10
31秒前
威武的冷霜完成签到,获得积分10
31秒前
英俊的铭应助liangliang采纳,获得10
32秒前
33秒前
34秒前
haly完成签到,获得积分10
34秒前
cy0824发布了新的文献求助10
34秒前
38秒前
38秒前
haly发布了新的文献求助10
39秒前
皮卡皮卡丘完成签到,获得积分10
44秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Rapid Review of Electrodiagnostic and Neuromuscular Medicine: A Must-Have Reference for Neurologists and Physiatrists 1000
求中国石油大学(北京)图书馆的硕士论文,作者董晨,十年前搞太赫兹的 500
Narrative Method and Narrative form in Masaccio's Tribute Money 500
基于3um sOl硅光平台的集成发射芯片关键器件研究 500
Educational Research: Planning, Conducting, and Evaluating Quantitative and Qualitative Research 460
Development in Infancy 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4785308
求助须知:如何正确求助?哪些是违规求助? 4112157
关于积分的说明 12721529
捐赠科研通 3837063
什么是DOI,文献DOI怎么找? 2115655
邀请新用户注册赠送积分活动 1138569
关于科研通互助平台的介绍 1024770