Evolutionary Quantitative Genetics

数量遗传学 生物 数量性状位点 特质 进化生物学 适应不良 选择(遗传算法) 多效性 多基因 遗传(遗传算法) 适应(眼睛) 多元统计 进化动力学 遗传学 基因 遗传变异 表型 统计 人口 人口学 计算机科学 人工智能 数学 神经科学 社会学 程序设计语言
作者
Stevan J. Arnold
出处
期刊:Oxford University Press eBooks [Oxford University Press]
被引量:18
标识
DOI:10.1093/oso/9780192859389.001.0001
摘要

Abstract Evolutionary quantitative genetics is concerned with the evolution of quantitative traits that are affected by many genes (e.g., body size, metabolic rate, competitive ability). Although evolutionary quantitative genetics has emerged as the dominant paradigm for understanding evolution, the full scope of its achievements are not yet apparent to a wide audience. To reach and engage that wider audience, this book summarizes important empirical and theoretical results in evolutionary quantitative genetics. Here are a few significant signposts along the path of the book’s main argument: (1) Analysis of a large literature on selection measured in nature indicates that most traits are close to, if not on, an adaptive peak. (2) QTL and GWAS studies have shown that quantitative traits are affected by scores or if not hundreds of genes (polygeny). (3) Most traits interact with other traits, forming functional complexes that are shaped by stabilizing and correlational selection. (4) Such trait complexes can persist for hundreds of millions of years, suggesting long-lasting patterns of multivariate selection. (5) Perpetual, random movement of the adaptive peak is the common denominator of successful models of adaptive radiation. A single model of adaptive radiation can produce stasis or exuberant diversification depending on the setting for the rate of peak movement. (6) Simulation studies of evolving multivariate inheritance suggest that processes of mutation, inheritance, and selection may evolve towards mutual alignment with the predominant directions of peak movement. (7) Evolutionary models of trait-based interaction between species (e.g., predators and prey) suggest that periods of maladaptation may be common and that trait means will equilibrate downslope from adaptive peaks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
qiehahah发布了新的文献求助10
5秒前
田田完成签到,获得积分10
5秒前
6秒前
踏实的硬币完成签到,获得积分10
7秒前
夏时安发布了新的文献求助20
8秒前
冰魂应助肖舒震采纳,获得10
9秒前
13秒前
烟花应助Felly采纳,获得10
14秒前
Mya发布了新的文献求助10
16秒前
科研通AI5应助cjxxjc729采纳,获得10
17秒前
充电宝应助笑点低的映安采纳,获得10
19秒前
木染发布了新的文献求助10
22秒前
zmnzmnzmn应助Mya采纳,获得10
24秒前
畅快的刚完成签到 ,获得积分10
24秒前
谦让忆文完成签到,获得积分10
28秒前
35秒前
善学以致用应助青炀采纳,获得10
35秒前
Lysong发布了新的文献求助20
36秒前
檀江完成签到 ,获得积分10
37秒前
村长夫人发布了新的文献求助10
38秒前
嘉星糖完成签到,获得积分10
41秒前
41秒前
上官若男应助木染采纳,获得10
43秒前
爆米花应助qiehahah采纳,获得10
43秒前
深情安青应助qiehahah采纳,获得10
44秒前
LiuX发布了新的文献求助10
45秒前
永无止境完成签到 ,获得积分10
46秒前
pluto应助Lysong采纳,获得20
46秒前
寒冷寻桃完成签到 ,获得积分10
48秒前
48秒前
科研通AI5应助LiuX采纳,获得10
53秒前
科研通AI5应助谦让忆文采纳,获得10
53秒前
lucy完成签到,获得积分20
57秒前
58秒前
59秒前
1分钟前
Lysong完成签到,获得积分10
1分钟前
封腾关注了科研通微信公众号
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3776959
求助须知:如何正确求助?哪些是违规求助? 3322349
关于积分的说明 10209964
捐赠科研通 3037710
什么是DOI,文献DOI怎么找? 1666837
邀请新用户注册赠送积分活动 797676
科研通“疑难数据库(出版商)”最低求助积分说明 758003