Count-Based Morgan Fingerprint: A More Efficient and Interpretable Molecular Representation in Developing Machine Learning-Based Predictive Regression Models for Water Contaminants’ Activities and Properties

指纹(计算) 人工智能 代表(政治) 回归分析 回归 计算机科学 机器学习 数学 统计 法学 政治学 政治
作者
Shifa Zhong,Xiaohong Guan
出处
期刊:Environmental Science & Technology [American Chemical Society]
卷期号:57 (46): 18193-18202 被引量:73
标识
DOI:10.1021/acs.est.3c02198
摘要

In this study, we introduce the count-based Morgan fingerprint (C-MF) to represent chemical structures of contaminants and develop machine learning (ML)-based predictive models for their activities and properties. Compared with the binary Morgan fingerprint (B-MF), C-MF not only qualifies the presence or absence of an atom group but also quantifies its counts in a molecule. We employ six different ML algorithms (ridge regression, SVM, KNN, RF, XGBoost, and CatBoost) to develop models on 10 contaminant-related data sets based on C-MF and B-MF to compare them in terms of the model's predictive performance, interpretation, and applicability domain (AD). Our results show that C-MF outperforms B-MF in nine of 10 data sets in terms of model predictive performance. The advantage of C-MF over B-MF is dependent on the ML algorithm, and the performance enhancements are proportional to the difference in the chemical diversity of data sets calculated by B-MF and C-MF. Model interpretation results show that the C-MF-based model can elucidate the effect of atom group counts on the target and have a wider range of SHAP values. AD analysis shows that C-MF-based models have an AD similar to that of B-MF-based ones. Finally, we developed a "ContaminaNET" platform to deploy these C-MF-based models for free use.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
怡然尔柳完成签到,获得积分10
刚刚
smm完成签到,获得积分10
刚刚
寒舟饮完成签到 ,获得积分10
刚刚
张见树完成签到,获得积分10
1秒前
1秒前
麦兜兜应助科研通管家采纳,获得10
1秒前
今后应助科研通管家采纳,获得10
1秒前
orixero应助科研通管家采纳,获得10
1秒前
FashionBoy应助科研通管家采纳,获得10
1秒前
科研通AI5应助科研通管家采纳,获得10
1秒前
深情安青应助科研通管家采纳,获得10
2秒前
FashionBoy应助科研通管家采纳,获得10
2秒前
共享精神应助科研通管家采纳,获得10
2秒前
科研通AI2S应助科研通管家采纳,获得10
2秒前
李爱国应助科研通管家采纳,获得10
2秒前
浮游应助科研通管家采纳,获得10
2秒前
2秒前
不想干活应助科研通管家采纳,获得10
2秒前
wanci应助科研通管家采纳,获得10
2秒前
2秒前
朴素的闭月完成签到,获得积分10
2秒前
科目三应助科研通管家采纳,获得10
3秒前
不想干活应助科研通管家采纳,获得10
3秒前
不想干活应助科研通管家采纳,获得10
3秒前
情怀应助科研通管家采纳,获得10
3秒前
科研通AI5应助科研通管家采纳,获得10
3秒前
小二郎应助科研通管家采纳,获得10
3秒前
不想干活应助科研通管家采纳,获得10
3秒前
不想干活应助科研通管家采纳,获得10
3秒前
orixero应助科研通管家采纳,获得10
3秒前
Hello应助科研通管家采纳,获得10
3秒前
不想干活应助科研通管家采纳,获得10
3秒前
浮游应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
情怀应助科研通管家采纳,获得30
4秒前
4秒前
4秒前
康贝康乐完成签到,获得积分10
5秒前
6秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Determination of the boron concentration in diamond using optical spectroscopy 600
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Founding Fathers The Shaping of America 500
A new house rat (Mammalia: Rodentia: Muridae) from the Andaman and Nicobar Islands 500
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4550253
求助须知:如何正确求助?哪些是违规求助? 3980452
关于积分的说明 12323388
捐赠科研通 3649456
什么是DOI,文献DOI怎么找? 2009980
邀请新用户注册赠送积分活动 1045272
科研通“疑难数据库(出版商)”最低求助积分说明 933782