DepCap: A Smart Healthcare Framework for EEG Based Depression Detection Using Time-Frequency Response and Deep Neural Network

短时傅里叶变换 计算机科学 光谱图 人工智能 卷积神经网络 循环神经网络 模式识别(心理学) 深度学习 特征提取 脑电图 语音识别 可穿戴计算机 时频分析 人工神经网络 傅里叶变换 计算机视觉 心理学 神经科学 傅里叶分析 数学分析 数学 滤波器(信号处理) 嵌入式系统
作者
Geetanjali Sharma,Amit M. Joshi,Richa Gupta,Linga Reddy Cenkeramaddi
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:11: 52327-52338 被引量:28
标识
DOI:10.1109/access.2023.3275024
摘要

A novel wearable consumer electronics device for detecting Major Depressive Disorder (MDD) has been developed using deep learning techniques for smart healthcare. Accurate identification of MDD through individual interviews or perceiving Electroencephalogram (EEG) signals is challenging. This study presents the concept of a novel wearable smart cap named DepCap for real-time detection of depression using EEG signals. First, spectrogram images are generated from the EEG signals of depressed and healthy patients using Short-Time Fourier Transform (STFT) to extract valuable features. Then, these spectrogram images obtained from STFT are used as input to the classification model. A deep analysis is done using various neural networks consisting of Convolutional Neural Networks (CNNs) and Recurrent Neural Networks (RNNs). RNNs are used to extract temporal data from the EEG, while CNNs are used to retrieve spatial information. Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU) are the two different kinds of RNNs evaluated in this work. The implemented combination models are (STFT+CNN), (STFT+CNN-LSTM) and (STFT+CNN-GRU). Four pre-trained models, Inception, AlexNet, VGG16, and ResNet50 are also implemented along with the combination models. The dataset for this work is a publicly accessible dataset with 33 major depressive disorders and 30 healthy subjects. The evaluation results show that the STFT+CNN-LSTM has much better performance in terms of accuracy, sensitivity, specificity, and precision of 99.9%, 100%, 99.8%, and 99.4%, respectively, than other implemented models. The proposed wearable device DepCap is based on the STFT+CNN+LSTM model and is also integrated with the Internet of Medical Things (IoMT) framework for real-time depression detection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
无限寄翠完成签到,获得积分20
2秒前
2秒前
zhou应助Murphy采纳,获得10
4秒前
Niu1980发布了新的文献求助10
5秒前
香蕉觅云应助HHH采纳,获得10
5秒前
无限寄翠发布了新的文献求助10
5秒前
6秒前
z_king_d_23发布了新的文献求助10
7秒前
drwang完成签到,获得积分10
7秒前
热心萤完成签到,获得积分20
8秒前
开朗的晋鹏完成签到,获得积分10
9秒前
drwang发布了新的文献求助10
10秒前
tao发布了新的文献求助10
11秒前
13秒前
14秒前
量子星尘发布了新的文献求助10
17秒前
华仔应助zxb采纳,获得10
18秒前
HHH发布了新的文献求助10
18秒前
xiaoxiao晓发布了新的文献求助10
22秒前
爆米花应助z_king_d_23采纳,获得10
23秒前
满意冷荷完成签到,获得积分10
24秒前
30秒前
30秒前
palegg关注了科研通微信公众号
31秒前
ZWK发布了新的文献求助10
33秒前
cjsgdsb发布了新的文献求助10
34秒前
wendinfgmei应助mmol采纳,获得10
34秒前
猪猪hero应助66668888采纳,获得10
36秒前
37秒前
满意冷荷发布了新的文献求助10
37秒前
38秒前
隐形曼青应助从容的流沙采纳,获得10
38秒前
42秒前
42秒前
44秒前
量子星尘发布了新的文献求助10
45秒前
46秒前
47秒前
47秒前
高分求助中
The Oxford Encyclopedia of the History of Modern Psychology 2000
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 1200
Deutsche in China 1920-1950 1200
Applied Survey Data Analysis (第三版, 2025) 850
Mineral Deposits of Africa (1907-2023): Foundation for Future Exploration 800
The User Experience Team of One (2nd Edition) 600
 Introduction to Comparative Public Administration Administrative Systems and Reforms in Europe, Third Edition 3rd edition 590
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3881272
求助须知:如何正确求助?哪些是违规求助? 3423709
关于积分的说明 10735518
捐赠科研通 3148649
什么是DOI,文献DOI怎么找? 1737298
邀请新用户注册赠送积分活动 838799
科研通“疑难数据库(出版商)”最低求助积分说明 784087