清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Introducing radiomics model to predict active plaque in multiple sclerosis patients using magnetic resonance images

随机森林 人工智能 特征选择 支持向量机 模式识别(心理学) 朴素贝叶斯分类器 计算机科学 磁共振成像 无线电技术 逻辑回归 灰度级 机器学习 医学 放射科 图像(数学)
作者
Benyamin Khajetash,Ardeshir Talebi,Zahra Bagherpour,Samira Abbasi,Meysam Tavakoli
出处
期刊:Biomedical Physics & Engineering Express [IOP Publishing]
卷期号:9 (5): 055004-055004
标识
DOI:10.1088/2057-1976/ace261
摘要

Abstract Multiple Sclerosis (MS) is the most common non-traumatic disabling disease in young people. The prediction active plaque has the potential to offer new biomarkers for assessing the activity of MS disease. Consequently it supports patient management in the clinical setting and trials. This study aims to investigate the predictive capability of radiomics features for identifying active plaques in these patients using T2 FLAIR (Fluid Attenuated Inversion Recovery) images. For this purpose, a dataset images from 82 patients with 122 lesions was analyzed. Feature selection was performed using the Least Absolute Shrinkage and Selection Operator (LASSO) method. Six different classifier algorithms, namely K-Nearest Neighbors (KNN), Logistic Regression (LR), Decision Tree (DT), Support Vector Machine (SVM), Naive Bayes (NB), and Random Forest (RF), were employed for modeling. The models were evaluated using 5-fold cross-validation, and performance metrics including sensitivity, specificity, accuracy, area under the curve (AUC), and mean squared error were computed. A total of 107 radiomics features were extracted for each lesion, and 11 robust features were identified through the feature selection process. These features consisted of four shape features (elongation, flatness, major axis length, mesh volume), one first-order feature (energy), one Gray Level Co-occurrence Matrix feature (correlation), two Gray Level Run Length Matrix features (gray level non-uniformity, gray level non-uniformity normalized), and three Gray Level Size Zone Matrix features (low gray level zone emphasis, size zone non-uniformity, small area low gray level emphasis). The NB classifier demonstrated the best performance with an AUC, sensitivity, and specificity of 0.85, 0.82, and 0.66, respectively. The findings indicate the potential of radiomics features in predicting active MS plaques in T2 FLAIR images.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
前行的灿完成签到 ,获得积分10
10秒前
米饭多加水完成签到 ,获得积分10
11秒前
Barid完成签到,获得积分10
11秒前
37秒前
Shawn完成签到 ,获得积分10
51秒前
勤恳书包完成签到,获得积分10
53秒前
六一儿童节完成签到 ,获得积分10
55秒前
1分钟前
ssffzb2008发布了新的文献求助10
1分钟前
发个15分的完成签到 ,获得积分10
1分钟前
ssffzb2008完成签到,获得积分10
1分钟前
子春完成签到 ,获得积分10
2分钟前
prawn218完成签到 ,获得积分10
2分钟前
mashibeo完成签到,获得积分10
2分钟前
2分钟前
woxinyouyou完成签到,获得积分0
3分钟前
maggiexjl完成签到,获得积分10
3分钟前
wujiwuhui完成签到 ,获得积分10
3分钟前
潘fujun完成签到 ,获得积分10
3分钟前
4分钟前
光合作用完成签到,获得积分10
4分钟前
5分钟前
5分钟前
5分钟前
5分钟前
Party完成签到 ,获得积分10
5分钟前
5分钟前
科研通AI2S应助震动的凡柔采纳,获得10
6分钟前
CherylZhao完成签到,获得积分10
6分钟前
无悔完成签到 ,获得积分10
6分钟前
lilaccalla完成签到 ,获得积分10
6分钟前
六一完成签到 ,获得积分10
6分钟前
7分钟前
丹妮完成签到 ,获得积分10
7分钟前
7分钟前
ndx1993完成签到 ,获得积分10
8分钟前
飞快的冰淇淋完成签到 ,获得积分10
8分钟前
慕青应助Mine采纳,获得10
8分钟前
ZJakariae应助Sandy采纳,获得10
8分钟前
勤劳冰烟完成签到,获得积分10
9分钟前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
材料概论 周达飞 ppt 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3808131
求助须知:如何正确求助?哪些是违规求助? 3352745
关于积分的说明 10360245
捐赠科研通 3068739
什么是DOI,文献DOI怎么找? 1685251
邀请新用户注册赠送积分活动 810380
科研通“疑难数据库(出版商)”最低求助积分说明 766076