Production quality prediction of multistage manufacturing systems using multi-task joint deep learning

计算机科学 质量(理念) 任务(项目管理) 人工智能 反向传播 多任务学习 人工神经网络 机器学习 工程类 哲学 系统工程 认识论
作者
Pei Wang,Hai Qu,Qianle Zhang,Xun Xu,Sheng Yang
出处
期刊:Journal of Manufacturing Systems [Elsevier BV]
卷期号:70: 48-68 被引量:24
标识
DOI:10.1016/j.jmsy.2023.07.002
摘要

A multistage manufacturing system with multiple manufacturing stages is the key and main production mode for enterprises to achieve lean production. Due to the variation propagation between stages and multiple related quality prediction tasks, it is difficult to accurately predict the quality of multistage manufacturing systems with multiple tasks. Traditional single stage and single task quality prediction methods permit the multi stages and multiple tasks separately, which ignore multi-stage effects or the quality-related relationship between multiple quality output indicators and reduce the efficiency of quality prediction. In this paper, a production quality prediction framework based on multi-task joint deep learning is proposed to simultaneously evaluate the multi-task quality of all stages in a multistage manufacturing system. To be specific, variation propagation cumulative impact between multiple manufacturing stages is innovatively expressed by designing a multi-scale convolutional neural network with control gates (MCNN-CG) to extract and propagate data features. Production quality with multi-tasks at all stages is jointly predicted by designing a multi-layer multi-gate mixture-of-experts multi-task (ML-MMoE) model with reducing multi-task predictive loss simultaneously. The soft parameter-sharing strategy and multi-gate attention strategy are separately designed to ensure information sharing while learning personalized features of tasks to improve quality prediction accuracy of each task. In addition, a loss function based on homoscedastic uncertainty and regularization is designed to automatically learn the weight between multi-stage and multi-task losses. Experiments on multistage assembly test data of an inertial navigation manufacturing system show that the proposed method performs better than traditional models. Compared to the single-stage model, the proposed multistage model has an average improvement of 8.5%, 20.0% and 23.3% in R2, MAE and RMSE respectively in the second stage. Compared with the traditional multi-stage model, the proposed model has an average improvement of 1.7%, 6.2% and 9.8% in R2, MAE and RMSE respectively in the second stage.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
孜然西瓜发布了新的文献求助10
刚刚
机灵乐驹完成签到,获得积分10
刚刚
glitter完成签到,获得积分20
刚刚
why发布了新的文献求助10
1秒前
郝晨晰发布了新的文献求助10
1秒前
zmmm发布了新的文献求助10
1秒前
1秒前
pengchen完成签到 ,获得积分10
2秒前
2秒前
4秒前
打打应助认真初之采纳,获得10
4秒前
莫西莫西完成签到,获得积分10
4秒前
共享精神应助Anastasia采纳,获得10
4秒前
4秒前
5秒前
猪猪侠完成签到,获得积分10
5秒前
mingxi发布了新的文献求助10
5秒前
5秒前
酷波er应助dong采纳,获得10
6秒前
6秒前
搜集达人应助Dlan采纳,获得10
6秒前
7秒前
zmmm完成签到,获得积分10
7秒前
自由山槐发布了新的文献求助100
8秒前
cc完成签到 ,获得积分10
8秒前
贺贺发布了新的文献求助10
9秒前
9秒前
活泼菠萝完成签到,获得积分10
9秒前
Chang发布了新的文献求助10
9秒前
mingxi完成签到,获得积分10
12秒前
12秒前
12秒前
dddddd发布了新的文献求助10
13秒前
等待冬亦应助无尘采纳,获得20
14秒前
14秒前
FashionBoy应助里奥采纳,获得10
14秒前
夕夕成玦完成签到,获得积分10
15秒前
yangfan发布了新的文献求助10
15秒前
15秒前
鲤鱼又菡发布了新的文献求助10
16秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Experimental Design for the Life Sciences 200
Semiconductor Wafer Bonding: Science Technology, and Applications VI 200
Parallel Optimization 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3835735
求助须知:如何正确求助?哪些是违规求助? 3378088
关于积分的说明 10502218
捐赠科研通 3097678
什么是DOI,文献DOI怎么找? 1705955
邀请新用户注册赠送积分活动 820760
科研通“疑难数据库(出版商)”最低求助积分说明 772274