High-throughput materials screening algorithm based on first-principles density functional theory and artificial neural network for high-entropy alloys

相干势近似 人工神经网络 密度泛函理论 算法 材料科学 相(物质) 热力学 计算机科学 统计物理学 电子结构 凝聚态物理 物理 人工智能 化学 计算化学 量子力学
作者
Meena Rittiruam,Jakapob Noppakhun,Sorawee Setasuban,Nuttanon Aumnongpho,Attachai Sriwattana,Suphawich Boonchuay,Tinnakorn Saelee,Chanthip Wangphon,Annop Ektarawong,Patchanee Chammingkwan,Toshiaki Taniike,Supareak Praserthdam,Piyasan Praserthdam
出处
期刊:Scientific Reports [Nature Portfolio]
卷期号:12 (1)
标识
DOI:10.1038/s41598-022-21209-0
摘要

This work introduced the high-throughput phase prediction of PtPd-based high-entropy alloys via the algorithm based on a combined Korringa-Kohn-Rostoker coherent potential approximation (KKR-CPA) and artificial neural network (ANN) technique. As the first step, the KKR-CPA was employed to generate 2,720 data of formation energy and lattice parameters in the framework of the first-principles density functional theory. Following the data generation, 15 features were selected and verified for all HEA systems in each phase (FCC and BCC) via ANN. The algorithm exhibited high accuracy for all four prediction models on 36,556 data from 9139 HEA systems with 137,085 features, verified by R2 closed to unity and the mean relative error (MRE) within 5%. From this dataset comprising 5002 and 4137 systems of FCC and BCC phases, it can be realized based on the highest tendency of HEA phase formation that (1) Sc, Co, Cu, Zn, Y, Ru, Cd, Os, Ir, Hg, Al, Si, P, As, and Tl favor FCC phase, (2) Hf, Ga, In, Sn, Pb, and Bi favor BCC phase, and (3) Ti, V, Cr, Mn, Fe, Ni, Zr, Nb, Mo, Tc, Rh, Ag, Ta, W, Re, Au, Ge, and Sb can be found in both FCC and BCC phases with comparable tendency, where all predictions are in good agreement with the data from the literature. Thus, the combination of KKR-CPA and ANN can reduce the computational cost for the screening of PtPd-based HEA and accurately predict the structure, i.e., FCC, BCC, etc.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
夏定海发布了新的文献求助10
2秒前
顺顺完成签到 ,获得积分10
2秒前
在水一方应助科研通管家采纳,获得10
3秒前
Lucas应助科研通管家采纳,获得10
3秒前
赘婿应助科研通管家采纳,获得10
3秒前
Akim应助科研通管家采纳,获得10
3秒前
123发布了新的文献求助10
3秒前
3秒前
小花发布了新的文献求助10
3秒前
wickedzz发布了新的文献求助10
4秒前
4秒前
lalala完成签到,获得积分10
4秒前
顾矜应助BruceQ采纳,获得10
5秒前
早睡早起完成签到,获得积分10
5秒前
善学以致用应助一只小盆采纳,获得10
6秒前
8秒前
lizhiqian2024发布了新的文献求助10
8秒前
子云完成签到,获得积分10
8秒前
Cc发布了新的文献求助10
9秒前
CodeCraft应助研友_Z1eDgZ采纳,获得10
10秒前
frozen完成签到,获得积分10
10秒前
小二郎应助Linyi采纳,获得10
10秒前
10秒前
唧唧完成签到,获得积分10
10秒前
今天吃烧麦了吗完成签到,获得积分10
11秒前
幸运的尔芙完成签到,获得积分10
12秒前
aaabbb完成签到,获得积分10
13秒前
笨笨金毛完成签到 ,获得积分10
13秒前
dddddd发布了新的文献求助10
13秒前
14秒前
Alexander发布了新的文献求助10
15秒前
JOJO完成签到,获得积分10
15秒前
活泼的面包完成签到,获得积分10
15秒前
15秒前
16秒前
完美世界应助平凡的七月采纳,获得10
16秒前
16秒前
李爱国应助朝天椒采纳,获得10
17秒前
十五完成签到,获得积分10
18秒前
18秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Encyclopedia of Geology (2nd Edition) 2000
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3786235
求助须知:如何正确求助?哪些是违规求助? 3331908
关于积分的说明 10252787
捐赠科研通 3047188
什么是DOI,文献DOI怎么找? 1672476
邀请新用户注册赠送积分活动 801290
科研通“疑难数据库(出版商)”最低求助积分说明 760141