亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Survival rate prediction of nasopharyngeal carcinoma patients based on MRI and gene expression using a deep neural network

鼻咽癌 接收机工作特性 比例危险模型 秩相关 危险系数 磁共振成像 相关性 医学 人工智能 生存分析 肿瘤科 内科学 放射治疗 机器学习 放射科 计算机科学 数学 几何学 置信区间
作者
Qihao Zhang,Gang Wu,Qianyu Yang,Ganmian Dai,Tiansheng Li,Pianpian Chen,Jiao Li,Weiyuan Huang
出处
期刊:Cancer Science [Wiley]
卷期号:114 (4): 1596-1605 被引量:11
标识
DOI:10.1111/cas.15704
摘要

To achieve a better treatment regimen and follow-up assessment design for intensity-modulated radiotherapy (IMRT)-treated nasopharyngeal carcinoma (NPC) patients, an accurate progression-free survival (PFS) time prediction algorithm is needed. We propose developing a PFS prediction model of NPC patients after IMRT treatment using a deep learning method and comparing that with the traditional texture analysis method. One hundred and fifty-one NPC patients were included in this retrospective study. T1-weighted, proton density and dynamic contrast-enhanced magnetic resonance (MR) images were acquired. The expression level of five genes (HIF-1α, EGFR, PTEN, Ki-67, and VEGF) and infection of Epstein-Barr (EB) virus were tested. A residual network was trained to predict PFS from MR images. The output as well as patient characteristics were combined using a linear regression model to provide a final PFS prediction. The prediction accuracy was compared with that of the traditional texture analysis method. A regression model combining the deep learning output with HIF-1α expression and Epstein-Barr infection provides the best PFS prediction accuracy (Spearman correlation R2 = 0.53; Harrell's C-index = 0.82; receiver operative curve [ROC] analysis area under the curve [AUC] = 0.88; log-rank test hazard ratio [HR] = 8.45), higher than a regression model combining texture analysis with HIF-1α expression (Spearman correlation R2 = 0.14; Harrell's C-index =0.68; ROC analysis AUC = 0.76; log-rank test HR = 2.85). The deep learning method does not require a manually drawn tumor region of interest. MR image processing using deep learning combined with patient characteristics can provide accurate PFS prediction for nasopharyngeal carcinoma patients and does not rely on specific kernels or tumor regions of interest, which is needed for the texture analysis method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
称心如意完成签到 ,获得积分10
12秒前
cdercder应助科研通管家采纳,获得10
38秒前
科研通AI2S应助科研通管家采纳,获得10
38秒前
50秒前
54秒前
shea发布了新的文献求助10
59秒前
ccj完成签到,获得积分10
1分钟前
乐乐应助shea采纳,获得10
1分钟前
JazzWon完成签到,获得积分10
1分钟前
打打应助专注纸飞机采纳,获得10
1分钟前
专注纸飞机完成签到,获得积分10
1分钟前
崔柯梦完成签到,获得积分10
1分钟前
zqq完成签到,获得积分0
1分钟前
情怀应助Dc采纳,获得10
1分钟前
科研通AI5应助魁梧的败采纳,获得10
1分钟前
1分钟前
Jasper应助shinn采纳,获得10
1分钟前
魁梧的败发布了新的文献求助10
2分钟前
Dc完成签到,获得积分10
2分钟前
2分钟前
shinn发布了新的文献求助10
2分钟前
cdercder应助科研通管家采纳,获得10
2分钟前
wanci应助科研通管家采纳,获得10
2分钟前
cdercder应助科研通管家采纳,获得10
2分钟前
cdercder应助科研通管家采纳,获得10
2分钟前
cdercder应助科研通管家采纳,获得10
2分钟前
2分钟前
顾矜应助意兴不阑珊采纳,获得10
2分钟前
2分钟前
Dc发布了新的文献求助10
2分钟前
liuyuanhao完成签到,获得积分10
2分钟前
2分钟前
1121完成签到 ,获得积分10
3分钟前
Microbiota完成签到,获得积分10
3分钟前
3分钟前
Chhc2发布了新的文献求助10
3分钟前
3分钟前
3分钟前
李同学发布了新的文献求助10
3分钟前
李同学完成签到,获得积分10
3分钟前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Narcissistic Personality Disorder 700
The Martian climate revisited: atmosphere and environment of a desert planet 500
Plasmonics 400
建国初期十七年翻译活动的实证研究. 建国初期十七年翻译活动的实证研究 400
Towards a spatial history of contemporary art in China 400
Ecology, Socialism and the Mastery of Nature: A Reply to Reiner Grundmann 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3847640
求助须知:如何正确求助?哪些是违规求助? 3390328
关于积分的说明 10561451
捐赠科研通 3110665
什么是DOI,文献DOI怎么找? 1714431
邀请新用户注册赠送积分活动 825231
科研通“疑难数据库(出版商)”最低求助积分说明 775421