A Practical End-to-End Inventory Management Model with Deep Learning

计算机科学 小贩 供应链 运筹学 供应链管理 大数据 过程(计算) 工业工程 数据挖掘 业务 营销 操作系统 工程类
作者
Meng Qi,Yuanyuan Shi,Yongzhi Qi,Chenxin Ma,Rong Yuan,Di Wu,Zuo‐Jun Max Shen
出处
期刊:Management Science [Institute for Operations Research and the Management Sciences]
卷期号:69 (2): 759-773 被引量:62
标识
DOI:10.1287/mnsc.2022.4564
摘要

We investigate a data-driven multiperiod inventory replenishment problem with uncertain demand and vendor lead time (VLT) with accessibility to a large quantity of historical data. Different from the traditional two-step predict-then-optimize (PTO) solution framework, we propose a one-step end-to-end (E2E) framework that uses deep learning models to output the suggested replenishment amount directly from input features without any intermediate step. The E2E model is trained to capture the behavior of the optimal dynamic programming solution under historical observations without any prior assumptions on the distributions of the demand and the VLT. By conducting a series of thorough numerical experiments using real data from one of the leading e-commerce companies, we demonstrate the advantages of the proposed E2E model over conventional PTO frameworks. We also conduct a field experiment with JD.com, and the results show that our new algorithm reduces holding cost, stockout cost, total inventory cost, and turnover rate substantially compared with JD’s current practice. For the supply chain management industry, our E2E model shortens the decision process and provides an automatic inventory management solution with the possibility to generalize and scale. The concept of E2E, which uses the input information directly for the ultimate goal, can also be useful in practice for other supply chain management circumstances. This paper was accepted by Hamid Nazerzadeh, big data analytics. Funding: This research was supported by the National Key Research and Development Program of China [Grant 2018YFB1700600] and National Natural Science Foundation of China [Grants 71991462 and 91746210]. Supplemental Material: The online data are available at https://doi.org/10.1287/mnsc.2022.4564 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
子衿完成签到,获得积分10
3秒前
3秒前
4秒前
5秒前
小蘑菇应助张晓天采纳,获得10
6秒前
海德堡发布了新的文献求助10
7秒前
Orange应助hy采纳,获得10
7秒前
7秒前
子衿发布了新的文献求助10
8秒前
8秒前
黎少俊发布了新的文献求助10
8秒前
Jasper应助峰林采纳,获得10
8秒前
一只椰青完成签到,获得积分20
8秒前
ZCY关注了科研通微信公众号
9秒前
10秒前
bobowang发布了新的文献求助10
10秒前
11秒前
屾哥发布了新的文献求助10
12秒前
Akim应助nnm采纳,获得10
13秒前
14秒前
不摇碧莲完成签到 ,获得积分10
14秒前
14秒前
玉1完成签到 ,获得积分10
15秒前
17秒前
17秒前
Massback发布了新的文献求助10
18秒前
18秒前
18秒前
今后应助xiaoxin采纳,获得10
18秒前
玉1关注了科研通微信公众号
19秒前
桐桐应助黎少俊采纳,获得10
19秒前
鸭梨很大发布了新的文献求助10
19秒前
20秒前
21秒前
英俊的铭应助美丽荣轩采纳,获得50
21秒前
21秒前
Hz完成签到,获得积分10
21秒前
自信安荷完成签到,获得积分10
21秒前
高分求助中
Basic Discrete Mathematics 1000
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3799006
求助须知:如何正确求助?哪些是违规求助? 3344720
关于积分的说明 10321316
捐赠科研通 3061197
什么是DOI,文献DOI怎么找? 1680067
邀请新用户注册赠送积分活动 806880
科研通“疑难数据库(出版商)”最低求助积分说明 763435