Accuracy-diversity optimization in personalized recommender system via trajectory reinforcement based bacterial colony optimization

计算机科学 推荐系统 水准点(测量) 机器学习 趋同(经济学) 最优化问题 人工智能 数据挖掘 数学优化 算法 数学 大地测量学 经济增长 经济 地理
作者
Shuang Geng,Xiaofu He,Gemin Liang,Ben Niu,Sen Liu,Yang He
出处
期刊:Information Processing and Management [Elsevier BV]
卷期号:60 (2): 103205-103205 被引量:1
标识
DOI:10.1016/j.ipm.2022.103205
摘要

Personalized recommender systems have been extensively studied in human-centered intelligent systems. Existing recommendation techniques have achieved comparable performance in predictive accuracy; however, the trade-off between recommendation accuracy and diversity poses new challenges, as diversification may lead to accuracy loss, whereas it can solve the over-fitting problem and enhance the user experience. In this study, we propose a heuristic optimization-based recommendation model that jointly optimizes accuracy and diversity performance by obtaining a set of optimized solutions. To establish the best accuracy-diversity balance, a novel trajectory-reinforcement-based bacterial colony optimization algorithm was developed. The improved bacterial colony optimization algorithm was comprehensively evaluated by comparing it with eight popular and state-of-the-art algorithms on ten benchmark testing problems with different degrees of complexity. Furthermore, an optimization-based recommendation model was applied to a real-world recommendation dataset. The results demonstrate that the improved bacterial colony optimization algorithm achieves the best overall performance for benchmark problems in terms of convergence and diversity. In the real-world recommendation task, the proposed approach improved the diversity performance by 1.62% to 8.62% while maintaining superior (1.88% to 40.32%) accuracy performance. Additionally, the proposed personalized recommendation model can provide a set of nondominated solutions instead of a single solution to accommodate the ever-changing preferences of users and service providers. Therefore, this work demonstrates the excellence of an optimization-based recommendation approach for solving the accuracy-diversity trade-off.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
LANGYE发布了新的文献求助10
刚刚
思源应助hui采纳,获得10
刚刚
可爱的函函应助Benjamin采纳,获得10
刚刚
zyj完成签到 ,获得积分10
1秒前
阿曼尼完成签到 ,获得积分10
1秒前
0.5地板砖完成签到,获得积分10
2秒前
北海qy完成签到,获得积分10
2秒前
2秒前
Wang完成签到,获得积分10
2秒前
眇鱼完成签到 ,获得积分10
2秒前
Kunying发布了新的文献求助50
2秒前
Dannerys完成签到 ,获得积分10
2秒前
小柠檬完成签到,获得积分20
3秒前
tramp应助HAO采纳,获得10
3秒前
tramp应助书晨采纳,获得10
4秒前
popo完成签到,获得积分10
4秒前
4秒前
wds2023完成签到 ,获得积分10
4秒前
luanzh完成签到,获得积分20
5秒前
十里长亭发布了新的文献求助10
6秒前
白月当归完成签到,获得积分10
7秒前
火火完成签到,获得积分10
7秒前
冷酷莫言发布了新的文献求助10
7秒前
bucmegg发布了新的文献求助10
8秒前
lalala完成签到,获得积分10
9秒前
9秒前
伊诺完成签到,获得积分10
9秒前
9秒前
整齐的灭绝完成签到 ,获得积分10
9秒前
Ranrunn完成签到,获得积分10
9秒前
9秒前
大树完成签到 ,获得积分10
10秒前
不知道取啥名完成签到 ,获得积分10
10秒前
淡然紫蓝应助李健采纳,获得10
11秒前
1111发布了新的文献求助10
12秒前
欧阳蛋蛋鸡完成签到 ,获得积分10
13秒前
13秒前
13秒前
科研三井泽完成签到,获得积分10
14秒前
14秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
Pathology of Laboratory Rodents and Rabbits (5th Edition) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3816117
求助须知:如何正确求助?哪些是违规求助? 3359667
关于积分的说明 10403987
捐赠科研通 3077496
什么是DOI,文献DOI怎么找? 1690307
邀请新用户注册赠送积分活动 813741
科研通“疑难数据库(出版商)”最低求助积分说明 767781