Foreground Fusion-Based Liquefied Natural Gas Leak Detection Framework From Surveillance Thermal Imaging

稳健性(进化) 泄漏 计算机科学 检漏 气体泄漏 人工智能 背景减法 棱锥(几何) 卷积神经网络 融合机制 液化天然气 计算机视觉 天然气 实时计算 融合 工程类 像素 生物化学 化学 物理 语言学 有机化学 光学 哲学 环境工程 脂质双层融合 基因 废物管理
作者
Junchi Bin,Zhila Bahrami,Choudhury A. Rahman,Shan Du,Shane Rogers,Zheng Liu
出处
期刊:IEEE transactions on emerging topics in computational intelligence [Institute of Electrical and Electronics Engineers]
卷期号:7 (4): 1151-1162 被引量:8
标识
DOI:10.1109/tetci.2022.3214826
摘要

A leak detection and repair survey (LDAR) is essential to ensure a reliable and safe liquefied natural gas (LNG) supply. Modern LDAR systems deploy numerous fixed thermal imaging devices to automatically monitor the risk of potential leaks empowered by computational intelligence frameworks. Existing frameworks employ either background subtraction-based (BGS-based) or deep neural network-based (DNN-based) frameworks for LNG leak detection from thermal images. However, the BGS-based frameworks feature high sensitivity to perceive LNG emissions with low precision. On the contrary, the DNN-based frameworks can precisely classify the LNG leak after training while the sensitivity is low. Additionally, conventional DNN-based frameworks are difficult in modeling non-rigid objects such as LNG gas due to limited perceptive fields. Therefore, this study proposes a hybrid framework, namely foreground fusion-based gas detection (FFBGD), combining the advantages of BGS-based and DNN-based detectors for improved detection robustness through newly introduced concept of information fusion to LNG industries. Specifically, a foreground fusion network (FFN) is designed to fuse information of original thermal and foreground images after BGS based on the visual attention mechanism. Meanwhile, several advanced modules, i.e. deformable convolution, feature pyramid network, and cascade region-of-interest (ROI) head are adopted to enhance leak detection by offering better perceptive fields. Extensive experiments are carried out in this study to demonstrate the significant improvement brought by the proposed FFBGD over leak detection accuracy and robustness. Hence, the proposed solution can be deployed in energy facilities and enable reliable visual surveillance of LNG leaks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
罗健完成签到 ,获得积分10
2秒前
科研通AI5应助阔达的雁凡采纳,获得10
2秒前
phjx发布了新的文献求助20
3秒前
3秒前
123完成签到,获得积分10
4秒前
4秒前
Winner2019完成签到,获得积分10
5秒前
6秒前
Tangyartie完成签到 ,获得积分10
6秒前
茉莉静颖应助MM采纳,获得10
6秒前
6秒前
Lmy完成签到,获得积分10
7秒前
翟威发布了新的文献求助10
7秒前
珺儿完成签到,获得积分10
7秒前
DKO253完成签到,获得积分10
8秒前
8秒前
8秒前
9秒前
9秒前
学术蜗牛完成签到,获得积分10
9秒前
9秒前
yue发布了新的文献求助10
9秒前
TiY发布了新的文献求助10
10秒前
10秒前
11秒前
科研通AI5应助小软采纳,获得10
11秒前
August发布了新的文献求助10
12秒前
ze发布了新的文献求助10
12秒前
WAM发布了新的文献求助10
13秒前
14秒前
科研小Li发布了新的文献求助10
15秒前
健忘捕发布了新的文献求助10
15秒前
俭朴幻枫发布了新的文献求助10
15秒前
16秒前
茨茨喵喵发布了新的文献求助10
16秒前
xixi发布了新的文献求助10
18秒前
luke17743508621完成签到 ,获得积分10
18秒前
18秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
One Man Talking: Selected Essays of Shao Xunmei, 1929–1939 (PDF!) 1000
Technologies supporting mass customization of apparel: A pilot project 450
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3789298
求助须知:如何正确求助?哪些是违规求助? 3334334
关于积分的说明 10269281
捐赠科研通 3050758
什么是DOI,文献DOI怎么找? 1674155
邀请新用户注册赠送积分活动 802507
科研通“疑难数据库(出版商)”最低求助积分说明 760693