已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Automated attribution of forest disturbance types from remote sensing data: A synthesis

遥感 扰动(地质) 森林动态 森林生态学 环境科学 生态学 生态系统 计算机科学 环境资源管理 地理 地质学 生物 古生物学
作者
Amanda T. Stahl,Robert A. Andrus,Jeffrey A. Hicke,Andrew T. Hudak,Benjamin C. Bright,Arjan J. H. Meddens
出处
期刊:Remote Sensing of Environment [Elsevier]
卷期号:285: 113416-113416 被引量:54
标识
DOI:10.1016/j.rse.2022.113416
摘要

Remote sensing is widely used to detect forest disturbances (e.g., wildfires, harvest, or outbreaks of pathogens or insects) over spatiotemporal scales that are infeasible to capture with field surveys. To understand forest ecosystem dynamics and the ecological role of human and natural disturbances, researchers and managers would like to characterize spatiotemporal patterns of several types of disturbance. Recent advances include the development and testing of algorithms to automatically detect and attribute an array of disturbance types across large forest landscapes from remotely sensed imagery. We reviewed the scientific literature for automated disturbance type attribution in forest ecosystems to synthesize current knowledge and inform future work. We created metrics that characterize study contexts, methods, and outcomes to evaluate 34 studies that automated the attribution of several (two or more) forest disturbance types. Reported accuracies of ∼80% for up to eight disturbance types at local (500 km2) to continental (6.5 × 106 km2) spatial extents reaffirm the potential for attributing forest disturbances from remote sensing data at scales relevant to ecological research and forest management. Generally, greater accuracies were reported for attributing disturbance types that affect most of a pixel and exhibit spectral signatures distinct from other disturbances or the prior (undisturbed) condition. Accuracy of attributing disturbance type tends to be notably lower for disturbances with smaller spatial extents or resulting in subtle spectral changes, such as small patches of tree mortality covering <40% of a pixel or areas of tree damage without evident mortality (e.g., defoliator outbreaks). Nearly all (33 of 34) studies used Landsat image time series to attribute disturbance types because the Landsat archive is freely accessible, spans several decades (allowing longer-term change analyses), is calibrated to facilitate change analyses, and has multiple spectral bands that aid algorithms. In our synthesis, most studies focused on specific disturbance types of interest within a particular study area, rather than a comprehensive list of types that would make the algorithm more generally applicable at broader spatial extents. We recommend several future research areas to improve the thematic resolution, accuracy, and potentially the transferability of attribution algorithms. Further development and testing of algorithms will continue to reveal the most effective approaches for attributing disturbance types that have been more difficult to detect with available spectral data to date, such as insect damage or low severity wildfire, and to evaluate model sensitivity as well as accuracy. The lessons that collectively emerge from automated forest disturbance attribution studies have the potential to guide future research and management applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
自由的中蓝完成签到 ,获得积分10
刚刚
Tobby完成签到,获得积分10
1秒前
supreme辉完成签到,获得积分10
1秒前
学习要认真喽完成签到 ,获得积分10
2秒前
KUAILIZI发布了新的文献求助10
4秒前
空城完成签到,获得积分10
4秒前
4秒前
顾矜应助ceeray23采纳,获得20
5秒前
宣灵薇完成签到 ,获得积分0
5秒前
在水一方应助JackW采纳,获得10
8秒前
8秒前
企鹅完成签到,获得积分10
8秒前
酷酷云朵完成签到,获得积分10
9秒前
包容雪卉完成签到 ,获得积分10
9秒前
dyx完成签到,获得积分10
10秒前
wxn完成签到 ,获得积分10
10秒前
11秒前
贝贝完成签到 ,获得积分10
11秒前
沙海沉戈完成签到,获得积分0
12秒前
霸气剑通发布了新的文献求助10
12秒前
12秒前
木子完成签到 ,获得积分10
12秒前
阳光的衫完成签到,获得积分10
13秒前
阿玖完成签到 ,获得积分10
13秒前
wlikef发布了新的文献求助10
14秒前
14秒前
傲安发布了新的文献求助10
14秒前
独行独行发布了新的文献求助10
16秒前
君莫笑完成签到,获得积分10
16秒前
felix发布了新的文献求助10
17秒前
18秒前
Only完成签到 ,获得积分10
18秒前
索绪尔的豌豆完成签到,获得积分10
19秒前
19秒前
冷傲山彤完成签到,获得积分10
20秒前
felix发布了新的文献求助10
21秒前
nessa完成签到 ,获得积分10
21秒前
吃好睡好完成签到,获得积分10
22秒前
机灵毛豆完成签到 ,获得积分10
23秒前
felix发布了新的文献求助10
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5590158
求助须知:如何正确求助?哪些是违规求助? 4674624
关于积分的说明 14794757
捐赠科研通 4630578
什么是DOI,文献DOI怎么找? 2532630
邀请新用户注册赠送积分活动 1501218
关于科研通互助平台的介绍 1468576