已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Multiform Ensemble Self-Supervised Learning for Few-Shot Remote Sensing Scene Classification

计算机科学 人工智能 串联(数学) 机器学习 水准点(测量) 监督学习 上下文图像分类 模式识别(心理学) 人工神经网络 图像(数学) 大地测量学 数学 组合数学 地理
作者
Jianzhao Li,Maoguo Gong,Huilin Liu,Yourun Zhang,Mingyang Zhang,Yue Wu
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-16 被引量:33
标识
DOI:10.1109/tgrs.2023.3234252
摘要

Self-supervised learning is an effective way to solve model collapse for few-shot remote sensing scene classification (FSRSSC). However, most self-supervised contrastive learning auxiliary tasks perform poorly on the high interclass similarity problem in FSRSSC. Furthermore, it is time-consuming and computationally expensive to obtain the best combination among numerous self-supervised auxiliary tasks. In practical applications, we may encounter difficulties in remote sensing data acquisition and labeling, while most FSRSSC studies only focus on the former. To alleviate the above problems, we propose a multiform ensemble self-supervised learning (MES2L) framework for FSRSSC in this article. Based on the transfer learning-based few-shot scheme, we design a novel global–local contrastive learning auxiliary task to solve the low interclass separability problem. The self-attention mechanism is designed in the local contrast features to investigate the intrinsic associations between different remote sensing scene objectives. We also present a multiform ensemble enhancement (MEE) training method. Ensemble enhancement involves the concatenation of features extracted from different backbones trained by a combination of multiform self-supervised auxiliary tasks. MEE can not only be regarded as a more straightforward alternative to knowledge distillation but also can achieve an effective compromise between expensive computational cost and classification accuracy. In addition, we provide two scene classification schemes of inductive and transductive settings, corresponding to solving the difficulties of remote sensing data acquisition and labeling. The proposed network achieves state-of-the-art results on three benchmark FSRSSC datasets. The potential of the MES2L framework is also demonstrated in combination with classical metalearning-based and metric learning-based few-shot algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小白应助科研通管家采纳,获得20
1秒前
李爱国应助科研通管家采纳,获得10
2秒前
FashionBoy应助科研通管家采纳,获得10
2秒前
小白应助科研通管家采纳,获得20
2秒前
大模型应助科研通管家采纳,获得10
2秒前
Rita应助科研通管家采纳,获得10
2秒前
小白应助科研通管家采纳,获得20
2秒前
科研通AI5应助科研通管家采纳,获得20
2秒前
CodeCraft应助BoLuo采纳,获得10
2秒前
犹豫冰淇淋完成签到,获得积分10
3秒前
一二发布了新的文献求助10
3秒前
卡恩完成签到 ,获得积分10
4秒前
楠木南完成签到,获得积分10
5秒前
5秒前
自由悟空发布了新的文献求助10
6秒前
jokersyx完成签到,获得积分10
6秒前
9秒前
斯文败类应助武雨寒采纳,获得10
10秒前
易楠完成签到,获得积分10
17秒前
26秒前
一二完成签到 ,获得积分10
35秒前
慕青应助XOO采纳,获得10
35秒前
38秒前
毕业比耶完成签到,获得积分10
39秒前
39秒前
ttttttuu发布了新的文献求助20
42秒前
毕业比耶发布了新的文献求助10
43秒前
奈何发布了新的文献求助30
44秒前
张晶晶发布了新的文献求助20
44秒前
Lucas应助缓慢思枫采纳,获得10
45秒前
48秒前
Lucas应助yjy采纳,获得10
52秒前
学业顺利发布了新的文献求助10
53秒前
BoLuo完成签到,获得积分10
57秒前
万能图书馆应助的的采纳,获得10
59秒前
59秒前
学业顺利完成签到,获得积分10
1分钟前
JamesPei应助苹果小虾米采纳,获得10
1分钟前
1分钟前
1212完成签到,获得积分20
1分钟前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3800731
求助须知:如何正确求助?哪些是违规求助? 3346255
关于积分的说明 10328616
捐赠科研通 3062701
什么是DOI,文献DOI怎么找? 1681157
邀请新用户注册赠送积分活动 807369
科研通“疑难数据库(出版商)”最低求助积分说明 763646