Multiform Ensemble Self-Supervised Learning for Few-Shot Remote Sensing Scene Classification

计算机科学 人工智能 串联(数学) 机器学习 水准点(测量) 监督学习 上下文图像分类 模式识别(心理学) 人工神经网络 图像(数学) 大地测量学 数学 组合数学 地理
作者
Jianzhao Li,Maoguo Gong,Huilin Liu,Yourun Zhang,Mingyang Zhang,Yue Wu
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-16 被引量:37
标识
DOI:10.1109/tgrs.2023.3234252
摘要

Self-supervised learning is an effective way to solve model collapse for few-shot remote sensing scene classification (FSRSSC). However, most self-supervised contrastive learning auxiliary tasks perform poorly on the high interclass similarity problem in FSRSSC. Furthermore, it is time-consuming and computationally expensive to obtain the best combination among numerous self-supervised auxiliary tasks. In practical applications, we may encounter difficulties in remote sensing data acquisition and labeling, while most FSRSSC studies only focus on the former. To alleviate the above problems, we propose a multiform ensemble self-supervised learning (MES2L) framework for FSRSSC in this article. Based on the transfer learning-based few-shot scheme, we design a novel global–local contrastive learning auxiliary task to solve the low interclass separability problem. The self-attention mechanism is designed in the local contrast features to investigate the intrinsic associations between different remote sensing scene objectives. We also present a multiform ensemble enhancement (MEE) training method. Ensemble enhancement involves the concatenation of features extracted from different backbones trained by a combination of multiform self-supervised auxiliary tasks. MEE can not only be regarded as a more straightforward alternative to knowledge distillation but also can achieve an effective compromise between expensive computational cost and classification accuracy. In addition, we provide two scene classification schemes of inductive and transductive settings, corresponding to solving the difficulties of remote sensing data acquisition and labeling. The proposed network achieves state-of-the-art results on three benchmark FSRSSC datasets. The potential of the MES2L framework is also demonstrated in combination with classical metalearning-based and metric learning-based few-shot algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
领导范儿应助JL采纳,获得30
2秒前
hongjing发布了新的文献求助10
2秒前
3秒前
3秒前
ailemonmint完成签到 ,获得积分10
3秒前
4秒前
4秒前
qianqian发布了新的文献求助10
5秒前
朱笑白完成签到 ,获得积分10
5秒前
虚幻采枫发布了新的文献求助10
5秒前
司马立果发布了新的文献求助10
5秒前
量子星尘发布了新的文献求助10
6秒前
6秒前
Xiaoli发布了新的文献求助10
6秒前
香蕉觅云应助帅哥采纳,获得10
6秒前
容若发布了新的文献求助10
7秒前
cell完成签到,获得积分10
8秒前
葫芦冰糖发布了新的文献求助20
10秒前
12秒前
water完成签到,获得积分10
13秒前
田様应助元气少女岳云鹏采纳,获得10
13秒前
纯真的冥王星完成签到,获得积分10
14秒前
深情安青应助Han采纳,获得10
15秒前
16秒前
哆啦的空间站完成签到,获得积分10
16秒前
17秒前
17秒前
18秒前
asdfasdfj完成签到,获得积分20
18秒前
18秒前
无花果应助科研通管家采纳,获得10
18秒前
星辰大海应助科研通管家采纳,获得10
18秒前
SciGPT应助科研通管家采纳,获得10
18秒前
彭于晏应助科研通管家采纳,获得10
18秒前
fushumei应助科研通管家采纳,获得10
18秒前
田様应助科研通管家采纳,获得10
19秒前
科研通AI6应助科研通管家采纳,获得10
19秒前
科研通AI5应助欧姆小白采纳,获得10
19秒前
Johnson应助科研通管家采纳,获得10
19秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Building Quantum Computers 1000
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Molecular Cloning: A Laboratory Manual (Fourth Edition) 500
Social Epistemology: The Niches for Knowledge and Ignorance 500
优秀运动员运动寿命的人文社会学因素研究 500
Encyclopedia of Mathematical Physics 2nd Edition 420
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4240739
求助须知:如何正确求助?哪些是违规求助? 3774406
关于积分的说明 11853163
捐赠科研通 3429577
什么是DOI,文献DOI怎么找? 1882404
邀请新用户注册赠送积分活动 934325
科研通“疑难数据库(出版商)”最低求助积分说明 840937