马拉硫磷
氯氰菊酯
生物
黑腹果蝇
黑腹菌
胡椒基丁醇
二嗪酮
毒理
有害生物分析
生物技术
遗传学
杀虫剂
植物
农学
基因
作者
Robert W. Mertz,Samuel DeLorenzo,Haina Sun,Gregory M. Loeb,Jeffrey G. Scott
摘要
Drosophila melanogaster is a pest in vineyards because of its role in sour rot disease. Insecticides are commonly used, particularly late in the season, to control D. melanogaster and thus sour rot. Use of insecticides in vineyards and neighboring fruit production systems has led to the evolution of insecticide resistance in D. melanogaster, which is now widespread to commonly used insecticides like zeta-cypermethrin and malathion. Implementation of resistance management strategies is facilitated by an understanding of the mechanisms and genetics underlying the resistance.Starting with a vineyard-collected strain of D. melanogaster (NY18), we selected for a strain that was 1100-fold resistant to zeta-cypermethrin and one that was 40-fold resistant to malathion. Resistance was inherited as an incompletely dominant trait for zeta-cypermethrin. Resistance to malathion was inherited differently between reciprocal crosses. Insecticide bioassays using insecticide synergists found resistance to zeta-cypermethrin was partly suppressible with either piperonyl butoxide or S,S,S-tributylphosphorotrithionate, while resistance to malathion was unchanged by the synergists and mutations in Ace associated with the resistance were found.Resistance to zeta-cypermethrin is most likely due to enhanced detoxification, while the results with malathion were associated with two Ace alleles. How the newly selected strains can facilitate diagnostic tools for the identification of the mutations causing the resistance is discussed. © 2022 Society of Chemical Industry.
科研通智能强力驱动
Strongly Powered by AbleSci AI