Qualitative Analysis of Single Object and Multi Object Tracking Models

BitTorrent跟踪器 计算机科学 人工智能 视频跟踪 计算机视觉 跟踪(教育) 眼动 对象(语法) Boosting(机器学习) 目标检测 模式识别(心理学) 心理学 教育学
作者
Sumaira Manzoor,Kyu-Hyun Sung,Yueyuan Zhang,Ye-Chan An,Tae-Yong Kuc
标识
DOI:10.23919/iccas55662.2022.10003784
摘要

Tracking the object(s) of interest in the real world is one of the most salient research areas that has gained widespread attention due to its applications. Although different approaches based on traditional machine learning and modern deep learning have been proposed to tackle the single and multi-object tracking problems, these tasks are still challenging to perform. In our work, we conduct a comparative analysis of eleven object trackers to determine the most robust single object tracker (SOT) and multi-object tracker (MOT). The main contributions of our work are (1) employing nine pre-trained tracking algorithms to carry out the analysis for SOT that include: SiamMask, GOTURN, BOOSTING, MIL, KCF, TLD, MedianFlow, MOSSE, CSRT; (2) investigating MOT by integrating object detection models with object trackers using YOLOv4 combined with DeepSort, and CenterNet coupled with SORT; (3) creating our own testing videos dataset to perform experiments; (4) performing the qualitative analysis based on the visual representation of results by considering nine significant factors that are appearance and illumination variations, speed, accuracy, scale, partial and full-occlusion, report failure, and fast motion. Experimental results demonstrate that SiamMask tracker overcomes most of the environmental challenges for SOT while YOLOv+DeepSort tracker obtains good performance for MOT. However, these trackers are not robust enough to handle full occlusion in real-world scenarios and there is always a trade-off between tracking accuracy and speed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
嘻嘻完成签到,获得积分20
1秒前
1秒前
akamanuo完成签到,获得积分10
2秒前
Owen应助wzh采纳,获得10
2秒前
2秒前
3秒前
宁霸完成签到,获得积分0
3秒前
量子星尘发布了新的文献求助10
3秒前
达咩完成签到 ,获得积分10
3秒前
赘婿应助Wayne采纳,获得10
3秒前
科研通AI6应助青雉采纳,获得30
3秒前
3秒前
4秒前
iNk应助Awei采纳,获得20
4秒前
ttdwx完成签到,获得积分10
4秒前
嘻嘻完成签到,获得积分10
4秒前
小彤发布了新的文献求助30
4秒前
冷水完成签到,获得积分10
5秒前
yue应助承乐采纳,获得60
5秒前
fusucheng完成签到,获得积分10
5秒前
5秒前
6秒前
着急的小松鼠完成签到,获得积分10
6秒前
7秒前
拾玖发布了新的文献求助10
7秒前
韩麒嘉完成签到 ,获得积分10
7秒前
7秒前
7秒前
躞蹀完成签到,获得积分10
7秒前
7秒前
MIku发布了新的文献求助10
7秒前
李健应助科研通管家采纳,获得10
7秒前
聪明面包应助科研通管家采纳,获得10
7秒前
酷炫立果关注了科研通微信公众号
8秒前
小明应助科研通管家采纳,获得10
8秒前
zchchem发布了新的文献求助10
8秒前
Jasper应助科研通管家采纳,获得10
8秒前
我是老大应助科研通管家采纳,获得10
8秒前
8秒前
小蘑菇应助科研通管家采纳,获得30
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Encyclopedia of Materials: Plastics and Polymers 1000
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
Handbook of Social and Emotional Learning, Second Edition 900
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4928278
求助须知:如何正确求助?哪些是违规求助? 4197425
关于积分的说明 13038287
捐赠科研通 3970322
什么是DOI,文献DOI怎么找? 2175720
邀请新用户注册赠送积分活动 1192848
关于科研通互助平台的介绍 1103624