Deep Learning for Cross-Diagnostic Prediction of Mental Disorder Diagnosis and Prognosis Using Danish Nationwide Register and Genetic Data

双相情感障碍 重性抑郁障碍 精神科 医学 自闭症谱系障碍 人口 队列 医学诊断 精神障碍患病率 临床心理学 自闭症 儿科 心理健康 心情 内科学 病理 环境卫生
作者
Rosa Lundbye Allesøe,Wesley K. Thompson,Jonas Bybjerg‐Grauholm,David M. Hougaard,Merete Nordentoft,Thomas Werge,Simon Rasmussen,Michael E. Benros
出处
期刊:JAMA Psychiatry [American Medical Association]
卷期号:80 (2): 146-146 被引量:25
标识
DOI:10.1001/jamapsychiatry.2022.4076
摘要

Diagnoses and treatment of mental disorders are hampered by the current lack of objective markers needed to provide a more precise diagnosis and treatment strategy.To develop deep learning models to predict mental disorder diagnosis and severity spanning multiple diagnoses using nationwide register data, family and patient-specific diagnostic history, birth-related measurement, and genetics.This study was conducted from May 1, 1981, to December 31, 2016. For the analysis, which used a Danish population-based case-cohort sample of individuals born between 1981 and 2005, genotype data and matched longitudinal health register data were taken from the longitudinal Danish population-based Integrative Psychiatric Research Consortium 2012 case-cohort study. Included were individuals with mental disorders (attention-deficit/hyperactivity disorder [ADHD]), autism spectrum disorder (ASD), major depressive disorder (MDD), bipolar disorder (BD), schizophrenia spectrum disorders (SCZ), and population controls. Data were analyzed from February 1, 2021, to January 24, 2022.At least 1 hospital contact with diagnosis of ADHD, ASD, MDD, BD, or SCZ.The predictability of (1) mental disorder diagnosis and (2) severity trajectories (measured by future outpatient hospital contacts, admissions, and suicide attempts) were investigated using both a cross-diagnostic and single-disorder setup. Predictive power was measured by AUC, accuracy, and Matthews correlation coefficient (MCC), including an estimate of feature importance.A total of 63 535 individuals (mean [SD] age, 23 [7] years; 34 944 male [55%]; 28 591 female [45%]) were included in the model. Based on data prior to diagnosis, the specific diagnosis was predicted in a multidiagnostic prediction model including the background population with an overall area under the curve (AUC) of 0.81 and MCC of 0.28, whereas the single-disorder models gave AUCs/MCCs of 0.84/0.54 for SCZ, 0.79/0.41 for BD, 0.77/0.39 for ASD, 0.74/0.38, for ADHD, and 0.74/0.38 for MDD. The most important data sets for multidiagnostic prediction were previous mental disorders and age (11%-23% reduction in prediction accuracy when removed) followed by family diagnoses, birth-related measurements, and genetic data (3%-5% reduction in prediction accuracy when removed). Furthermore, when predicting subsequent disease trajectories of the disorder, the most severe cases were the most easily predictable, with an AUC of 0.72.Results of this diagnostic study suggest the possibility of combining genetics and registry data to predict both mental disorder diagnosis and disorder progression in a clinically relevant, cross-diagnostic setting prior to clinical assessment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
包容可乐完成签到,获得积分10
1秒前
1秒前
斯文败类应助朴实觅波采纳,获得30
2秒前
2秒前
2秒前
梁三岁发布了新的文献求助10
2秒前
儒雅猕猴桃完成签到,获得积分10
3秒前
4秒前
4秒前
Fonexy完成签到,获得积分10
5秒前
嗦了一碗粉完成签到 ,获得积分10
5秒前
美好焦发布了新的文献求助10
5秒前
今天做实验了吗完成签到 ,获得积分10
6秒前
清爽幻竹发布了新的文献求助20
6秒前
7秒前
Phyllis发布了新的文献求助10
7秒前
霸气梦菲完成签到,获得积分10
7秒前
8秒前
纸鹤发布了新的文献求助10
9秒前
典雅的静发布了新的文献求助10
9秒前
左眼天堂发布了新的文献求助10
10秒前
10秒前
墨羽完成签到,获得积分10
10秒前
jz发布了新的文献求助10
10秒前
11秒前
accpeted完成签到,获得积分10
11秒前
11秒前
宇宙凛发布了新的文献求助10
11秒前
量子星尘发布了新的文献求助10
11秒前
奋斗的绿海完成签到,获得积分10
11秒前
12秒前
微笑书白发布了新的文献求助10
12秒前
能干妙竹完成签到,获得积分10
12秒前
Kiling完成签到 ,获得积分10
13秒前
13秒前
耶耶完成签到,获得积分10
13秒前
13秒前
hui发布了新的文献求助10
14秒前
sztao发布了新的文献求助30
14秒前
ED应助Phyllis采纳,获得10
14秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3951532
求助须知:如何正确求助?哪些是违规求助? 3496928
关于积分的说明 11085323
捐赠科研通 3227364
什么是DOI,文献DOI怎么找? 1784413
邀请新用户注册赠送积分活动 868444
科研通“疑难数据库(出版商)”最低求助积分说明 801139