Traffic Flow Prediction Based on Spatiotemporal Potential Energy Fields

计算机科学 空间分析 数据挖掘 组分(热力学) 领域(数学) 网格 主成分分析 自相关 流量(计算机网络) 人工智能 遥感 数学 统计 物理 热力学 地质学 计算机安全 纯数学 几何学
作者
Jingyuan Wang,Jiahao Ji,Zhe Jiang,Leilei Sun
出处
期刊:IEEE Transactions on Knowledge and Data Engineering [IEEE Computer Society]
卷期号:35 (9): 9073-9087 被引量:11
标识
DOI:10.1109/tkde.2022.3221183
摘要

Traffic flow prediction is a fundamental problem in spatiotemporal data mining. Most of the existing studies focuses on designing statistical models to fit historical traffic data, which are purely data-driven approaches and fail to reveal the underlying mechanisms of urban traffic. To address this issue, we propose the spatiotemporal potential energy field model (ST-PEF+), which applies the field theory for human mobility to interpret the underlying mechanisms of urban traffic, and introduces the theory into data-driven deep learning models. ST-PEF+ consists of a PEF extraction module and a data-driven module. Inspired by the field theory for human mobility, the PEF extraction module adopts an algorithm to decompose the grid-based traffic flow graph into several polytree-based potential energy fields (PEFs), where traffic flows from high potential locations to low potential locations, just as water is driven by the gravity field. We also provide a theoretical analysis to ensure that the polytree decomposition algorithm can decompose any traffic flow graph. In the data-driven module, ST-PEF+ learns a spatiotemporal deep learning model to predict the dynamics of PEFs. The model adopts correlation-adaptive neural network structures, which consists of a temporal component for temporal correlations and a spatial component for spatial correlations. The temporal component employs a GRU and DCN combined structure to capture both short-term autocorrelation and long-term repeating patterns of PEFs. The spatial component extends the GAT using weighted directed attention to model the asymmetric spatial structure in PEFs. The prediction results of traffic flow are finally derived from PEFs that are predicted by the spatiotemporal deep learning model. We conduct extensive evaluations on three real-world traffic datasets. The results show that our model outperforms the state-of-the-art baselines. In addition, case studies confirm that the PEFs learned in our framework can reveal the underlying mechanisms of urban traffic, thus improving the model interpretability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
水沝完成签到 ,获得积分10
2秒前
CodeCraft应助zxh采纳,获得10
2秒前
123jopop完成签到,获得积分10
3秒前
kidult发布了新的文献求助30
3秒前
3秒前
清欢发布了新的文献求助10
3秒前
苹果纲完成签到,获得积分10
3秒前
南枝完成签到,获得积分10
4秒前
fun发布了新的文献求助10
4秒前
科研通AI5应助勤恳含烟采纳,获得10
4秒前
tcx完成签到 ,获得积分10
4秒前
Kayla发布了新的文献求助20
5秒前
5秒前
大道无形我有型完成签到,获得积分10
5秒前
FashionBoy应助巴巴塔采纳,获得10
6秒前
7秒前
Jasper应助HUGGSY采纳,获得10
7秒前
小李完成签到,获得积分10
8秒前
情怀应助131采纳,获得50
9秒前
甜甜玫瑰应助90采纳,获得10
9秒前
尹尹尹发布了新的文献求助10
9秒前
科研通AI5应助自然水风采纳,获得30
9秒前
我是老大应助迷路小丸子采纳,获得10
10秒前
自由山槐发布了新的文献求助30
11秒前
二十六画生完成签到,获得积分10
11秒前
爆米花应助猪猪hero采纳,获得10
12秒前
露露关注了科研通微信公众号
13秒前
张雯悦完成签到 ,获得积分20
14秒前
CC完成签到 ,获得积分10
14秒前
sdl发布了新的文献求助10
14秒前
14秒前
清秀凉面完成签到 ,获得积分10
15秒前
科研通AI5应助芒果派采纳,获得10
15秒前
15秒前
16秒前
科研通AI5应助欣慰外绣采纳,获得10
16秒前
16秒前
16秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Understanding Interaction in the Second Language Classroom Context 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3809722
求助须知:如何正确求助?哪些是违规求助? 3354237
关于积分的说明 10369760
捐赠科研通 3070510
什么是DOI,文献DOI怎么找? 1686393
邀请新用户注册赠送积分活动 810922
科研通“疑难数据库(出版商)”最低求助积分说明 766433