计算机科学
编码器
变压器
安全性令牌
模式
建筑
情态动词
人工智能
模态(人机交互)
图像融合
模式识别(心理学)
计算机视觉
图像(数学)
工程类
操作系统
电气工程
艺术
社会学
视觉艺术
计算机安全
电压
化学
高分子化学
社会科学
作者
David L. Hoffmann,Kai Norman Clasen,Begüm Demir
出处
期刊:Cornell University - arXiv
日期:2023-01-01
标识
DOI:10.48550/arxiv.2306.01523
摘要
In this paper, we introduce a novel Synchronized Class Token Fusion (SCT Fusion) architecture in the framework of multi-modal multi-label classification (MLC) of remote sensing (RS) images. The proposed architecture leverages modality-specific attention-based transformer encoders to process varying input modalities, while exchanging information across modalities by synchronizing the special class tokens after each transformer encoder block. The synchronization involves fusing the class tokens with a trainable fusion transformation, resulting in a synchronized class token that contains information from all modalities. As the fusion transformation is trainable, it allows to reach an accurate representation of the shared features among different modalities. Experimental results show the effectiveness of the proposed architecture over single-modality architectures and an early fusion multi-modal architecture when evaluated on a multi-modal MLC dataset. The code of the proposed architecture is publicly available at https://git.tu-berlin.de/rsim/sct-fusion.
科研通智能强力驱动
Strongly Powered by AbleSci AI