Discovery and validation of combined biomarkers for the diagnosis of esophageal intraepithelial neoplasia and esophageal squamous cell carcinoma

食管癌 食管 医学 食管肿瘤 食管鳞状细胞癌 上皮内瘤变 肿瘤科 癌症 病理 内科学 癌症研究 前列腺
作者
Ya-Qi Zheng,Haihua Huang,Shuxian Chen,Xiu‐E Xu,Zhi-Mao Li,Yuehong Li,Su-Zuan Chen,Wen-Xiong Luo,Yi Guo,Wei Liu,En‐Min Li,Li‐Yan Xu
出处
期刊:Journal of Proteomics [Elsevier BV]
卷期号:304: 105233-105233 被引量:2
标识
DOI:10.1016/j.jprot.2024.105233
摘要

Early diagnosis and intervention of esophageal squamous cell carcinoma (ESCC) can improve the prognosis. The purpose of this study was to identify biomarkers for ESCC and esophageal precancerous lesions (intraepithelial neoplasia, IEN). Based on the proteomic and genomic data of esophageal tissue including previously reported data, up-regulated proteins with copy number amplification in esophageal cancer were screened as candidate biomarkers. Five proteins, including KDM2A, RAD9A, ECT2, CYHR1 and TONSL, were confirmed by immunohistochemistry on ESCC and normal esophagus (NE). Then, we investigated the expression of 5 proteins in 236 participants (60 NEs, 93 IENs and 83 ESCCs) which were randomly divided into training set and test set. When distinguishing ESCC from NE, the area under curve (AUC) of the multiprotein model was 0.940 in the training set, while the lowest AUC of a protein was 0.735. In the test set, the results were similar. When distinguishing ESCC from IEN or distinguishing IEN from NE, the diagnostic efficiency of the multi-protein models were also improved compared with that of single protein. Our findings suggest that combined detection of KDM2A, RAD9A, ECT2, CYHR1 and TONSL can be used as potential biomarkers for the early diagnosis of ESCC and precancerous lesion development prediction. Candidate biomarkers including KDM2A, RAD9A, ECT2, CYHR1 and TONSL screened by integrating genomic and proteomic data from the esophagus can be used as potential biomarkers for the early diagnosis of esophageal squamous cell carcinoma and precancerous lesion development prediction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
中岛悠斗完成签到,获得积分10
1秒前
土豪的紫荷完成签到 ,获得积分10
1秒前
8R60d8应助paz_1010采纳,获得10
2秒前
快乐开山完成签到 ,获得积分10
4秒前
田様应助科研通管家采纳,获得10
5秒前
赫若魔应助科研通管家采纳,获得10
6秒前
NexusExplorer应助科研通管家采纳,获得10
6秒前
CipherSage应助科研通管家采纳,获得10
6秒前
顾矜应助科研通管家采纳,获得30
6秒前
星辰大海应助科研通管家采纳,获得100
6秒前
JamesPei应助科研通管家采纳,获得10
6秒前
Ava应助科研通管家采纳,获得10
6秒前
自然怀梦完成签到,获得积分10
8秒前
冷傲的擎汉完成签到 ,获得积分20
10秒前
舒适的藏花给舒适的藏花的求助进行了留言
11秒前
三七完成签到,获得积分10
11秒前
YG-in完成签到,获得积分10
12秒前
13秒前
浮游应助zhangfuchao采纳,获得10
13秒前
故城完成签到 ,获得积分10
13秒前
14秒前
安徽梁朝伟完成签到,获得积分10
17秒前
xyes完成签到,获得积分20
19秒前
20秒前
香蕉觅云应助www采纳,获得10
24秒前
xyes发布了新的文献求助30
25秒前
一一发布了新的文献求助10
25秒前
wanci应助lvsehx采纳,获得10
27秒前
27秒前
winfan完成签到 ,获得积分10
30秒前
宋薪薪完成签到,获得积分10
31秒前
jing2000yr完成签到,获得积分10
31秒前
棒棒糖发布了新的文献求助10
32秒前
34秒前
完美世界应助铜眼科采纳,获得10
35秒前
35秒前
37秒前
Sylvia发布了新的文献求助10
38秒前
lalala完成签到 ,获得积分10
39秒前
浮游应助木雷采纳,获得10
39秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Beauty and Innovation in La Machine Chinoise: Falla, Debussy, Ravel, Roussel 1000
Rapid Review of Electrodiagnostic and Neuromuscular Medicine: A Must-Have Reference for Neurologists and Physiatrists 1000
An overview of orchard cover crop management 800
基于3um sOl硅光平台的集成发射芯片关键器件研究 500
Educational Research: Planning, Conducting, and Evaluating Quantitative and Qualitative Research 460
National standards & grade-level outcomes for K-12 physical education 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4804341
求助须知:如何正确求助?哪些是违规求助? 4120965
关于积分的说明 12750005
捐赠科研通 3854064
什么是DOI,文献DOI怎么找? 2122468
邀请新用户注册赠送积分活动 1144515
关于科研通互助平台的介绍 1035729