Development of growth selection system and pocket engineering of d‐amino acid oxidase to enhance selective deamination activity toward d‐phosphinothricin

脱氨基 生物化学 氧化脱氨基 选择(遗传算法) 氧化酶试验 化学 氨基酸 计算机科学 人工智能
作者
Feng Cheng,Ke‐Xiang Sun,Xiao‐Xiao Gong,Wei Peng,Hua‐Yue Zhang,Xi‐Hang Liang,Ya‐Ping Xue,Yu‐Guo Zheng
出处
期刊:Biotechnology and Bioengineering [Wiley]
标识
DOI:10.1002/bit.28763
摘要

Abstract D‐amino acid oxidase (DAAO)‐catalyzed selective oxidative deamination is a very promising process for synthesizing l ‐amino acids including l ‐phosphinothricin ( l ‐PPT, a high‐efficiency and broad‐spectrum herbicide). However, the wild‐type DAAO's low activity toward unnatural substrates like d ‐phosphinothricin ( d ‐PPT) hampers its application. Herein, a DAAO from Caenorhabditis elegans ( Ce DAAO) was screened and engineered to improve the catalytic potential on d ‐PPT. First, we designed a novel growth selection system, taking into account the intricate relationship between the growth of Escherichia coli ( E. coli ) and the catalytic mechanism of DAAO. The developed system was used for high‐throughput screening of gene libraries, resulting in the discovery of a variant (M6) with significantly increased catalytic activity against d ‐PPT. The variant displays different catalytic properties on substrates with varying hydrophobicity and hydrophilicity. Analysis using Alphafold2 modeling and molecular dynamic simulations showed that the reason for the enhanced activity was the substrate‐binding pocket with enlarged size and suitable charge distribution. Further QM/MM calculations revealed that the crucial factor for enhancing activity lies in reducing the initial energy barrier of the reductive half reaction. Finally, a comprehensive binding‐model index to predict the enhanced activity of DAAO toward d ‐PPT, and an enzymatic deracemization approach was developed, enabling the efficient synthesis of l ‐PPT with remarkable efficiency.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
机智的访云完成签到,获得积分10
刚刚
From-ZTT完成签到,获得积分10
刚刚
一个O完成签到,获得积分10
1秒前
Fusr完成签到,获得积分10
1秒前
hail完成签到,获得积分10
2秒前
蘑菇发布了新的文献求助10
2秒前
小雪完成签到,获得积分20
2秒前
lh完成签到,获得积分10
3秒前
深情安青应助科研通管家采纳,获得10
3秒前
彭于晏应助科研通管家采纳,获得10
3秒前
羊毛毛衣完成签到,获得积分10
3秒前
打打应助科研通管家采纳,获得10
3秒前
Eos完成签到 ,获得积分10
4秒前
4秒前
危机的小丸子完成签到 ,获得积分10
4秒前
4秒前
重要问旋完成签到,获得积分10
4秒前
若尘完成签到,获得积分10
4秒前
开心的纸鹤完成签到,获得积分10
4秒前
yjzzz完成签到,获得积分10
4秒前
4秒前
zyfzyf完成签到,获得积分10
5秒前
Trista完成签到,获得积分10
5秒前
huhuhu完成签到 ,获得积分10
5秒前
lonelycube完成签到 ,获得积分10
5秒前
啦啦啦啦啦完成签到,获得积分10
5秒前
杰哥完成签到,获得积分10
5秒前
6秒前
赘婿应助夜泊采纳,获得10
6秒前
RebeccaHe完成签到,获得积分10
6秒前
Snow完成签到 ,获得积分10
6秒前
6秒前
郑宇轩关注了科研通微信公众号
7秒前
73Jennie123完成签到,获得积分10
7秒前
coco发布了新的文献求助10
7秒前
Akim应助gdh采纳,获得10
8秒前
可以完成签到,获得积分10
8秒前
ZZ完成签到,获得积分10
9秒前
WUXIN完成签到,获得积分10
9秒前
DD发布了新的文献求助10
9秒前
高分求助中
Mass producing individuality 600
Algorithmic Mathematics in Machine Learning 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
NK Cell Receptors: Advances in Cell Biology and Immunology by Colton Williams (Editor) 200
Effect of clapping movement with groove rhythm on executive function: focusing on audiomotor entrainment 200
The Oxford Handbook of Video Game Music and Sound 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3827518
求助须知:如何正确求助?哪些是违规求助? 3369808
关于积分的说明 10458344
捐赠科研通 3089517
什么是DOI,文献DOI怎么找? 1699957
邀请新用户注册赠送积分活动 817567
科研通“疑难数据库(出版商)”最低求助积分说明 770269