Deformable medical image registration based on wavelet transform and linear attention

计算机科学 人工智能 图像配准 计算机视觉 小波变换 小波 图像(数学) 模式识别(心理学)
作者
Weisheng Li,kun gan,Lijian Yang,Yin Zhang
出处
期刊:Biomedical Signal Processing and Control [Elsevier BV]
卷期号:95: 106413-106413 被引量:4
标识
DOI:10.1016/j.bspc.2024.106413
摘要

Medical image registration, which is the process of aligning two medical images to ensure spatial consistency, is extensively utilized in surgical navigation, lesion localization, and other fields. In recent years, Transformer-based models have achieved state-of-the-art image registration results. However, these models often lose significant information during image downsampling, and the window division operation in the window attention module disrupts the integrity of the anatomical structure, which limits the model's ability to capture global features. To address these problems, this study introduces an image registration model based on the wavelet transform and linear attention. Specifically, the discrete wavelet transform is leveraged to decompose the image, to provide more features to the model and harness the rich high-frequency information achieved from the wavelet transform, to effectively mitigate the information loss arising from downsampling. Wavelet transform and linear attention are combined to propose a linear wavelet self-attention (LWSA) module. Compared with other attention modules, this unique linear attention calculation method in LWSA reduces the computational complexity and significantly expands the receptive field of the module, ensuring the integrity of the anatomical structure. Additionally, the introduction of the wavelet transform allows the model to pay differential attention to different areas, thereby improving the model's performance. The efficacy of the proposed model in registration tasks was validated through comparative experiments with other models on three publicly available brain imaging datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Kate发布了新的文献求助10
1秒前
1秒前
快让我滚蛋毕业完成签到,获得积分10
1秒前
瑾木发布了新的文献求助10
2秒前
Liu发布了新的文献求助10
2秒前
2秒前
2秒前
3秒前
xyhua925发布了新的文献求助10
3秒前
4秒前
5秒前
找文献小助手完成签到,获得积分10
5秒前
传奇3应助嘟嘟豆806采纳,获得10
6秒前
搜集达人应助BugWriter采纳,获得10
6秒前
橘子皮完成签到,获得积分10
6秒前
明向腾发布了新的文献求助10
7秒前
典雅的俊驰应助李玉兰采纳,获得30
7秒前
CodeCraft应助一兀采纳,获得10
7秒前
风趣问蕊发布了新的文献求助10
8秒前
科研波比关注了科研通微信公众号
8秒前
8秒前
贪玩发布了新的文献求助20
9秒前
9秒前
9秒前
ntfn完成签到,获得积分10
10秒前
Simms完成签到,获得积分10
11秒前
骨科小周完成签到,获得积分10
12秒前
淡淡芷天应助小摆采纳,获得10
13秒前
游阿游发布了新的文献求助10
13秒前
小蘑菇应助xyhua925采纳,获得10
13秒前
13981592626发布了新的文献求助10
13秒前
执着的觅露完成签到 ,获得积分10
14秒前
爆米花应助JUNO采纳,获得10
14秒前
14秒前
15秒前
15秒前
15秒前
千秋梧完成签到,获得积分20
15秒前
量子星尘发布了新的文献求助10
15秒前
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5074229
求助须知:如何正确求助?哪些是违规求助? 4294374
关于积分的说明 13381128
捐赠科研通 4115792
什么是DOI,文献DOI怎么找? 2253873
邀请新用户注册赠送积分活动 1258494
关于科研通互助平台的介绍 1191343