High-Efficiency Effect-Directed Analysis Leveraging Five High Level Advancements: A Critical Review

计算机科学 环境科学 生化工程 工程类
作者
Jifu Liu,Tongtong Xiang,Xue‐Chao Song,Shaoqing Zhang,Qi Wu,Jie Gao,Meilin Lv,Chunzhen Shi,Xiaoxi Yang,Yanna Liu,Jianjie Fu,Wei Shi,Mingliang Fang,Guangbo Qu,Hongxia Yu,Guibin Jiang
出处
期刊:Environmental Science & Technology [American Chemical Society]
卷期号:58 (23): 9925-9944 被引量:21
标识
DOI:10.1021/acs.est.3c10996
摘要

Organic contaminants are ubiquitous in the environment, with mounting evidence unequivocally connecting them to aquatic toxicity, illness, and increased mortality, underscoring their substantial impacts on ecological security and environmental health. The intricate composition of sample mixtures and uncertain physicochemical features of potential toxic substances pose challenges to identify key toxicants in environmental samples. Effect-directed analysis (EDA), establishing a connection between key toxicants found in environmental samples and associated hazards, enables the identification of toxicants that can streamline research efforts and inform management action. Nevertheless, the advancement of EDA is constrained by the following factors: inadequate extraction and fractionation of environmental samples, limited bioassay endpoints and unknown linkage to higher order impacts, limited coverage of chemical analysis (i.e., high-resolution mass spectrometry, HRMS), and lacking effective linkage between bioassays and chemical analysis. This review proposes five key advancements to enhance the efficiency of EDA in addressing these challenges: (1) multiple adsorbents for comprehensive coverage of chemical extraction, (2) high-resolution microfractionation and multidimensional fractionation for refined fractionation, (3) robust in vivo/vitro bioassays and omics, (4) high-performance configurations for HRMS analysis, and (5) chemical-, data-, and knowledge-driven approaches for streamlined toxicant identification and validation. We envision that future EDA will integrate big data and artificial intelligence based on the development of quantitative omics, cutting-edge multidimensional microfractionation, and ultraperformance MS to identify environmental hazard factors, serving for broader environmental governance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Hello应助失眠的耳机采纳,获得10
1秒前
Anita发布了新的文献求助10
1秒前
草莓发布了新的文献求助30
2秒前
2秒前
sarah发布了新的文献求助10
2秒前
hy完成签到 ,获得积分10
3秒前
3333r发布了新的文献求助10
3秒前
3秒前
4秒前
若水三千发布了新的文献求助10
4秒前
土豆蔡蔡发布了新的文献求助10
5秒前
上官若男应助deway采纳,获得10
5秒前
5秒前
5秒前
pyb完成签到 ,获得积分10
5秒前
5秒前
5秒前
7秒前
7秒前
Doris发布了新的文献求助10
7秒前
7秒前
奋斗含巧发布了新的文献求助10
9秒前
yy完成签到,获得积分10
10秒前
大个应助听雨眠采纳,获得10
10秒前
10秒前
熠熠完成签到,获得积分10
10秒前
11秒前
11秒前
malistm发布了新的文献求助10
11秒前
好好应助Gui桂采纳,获得10
11秒前
11秒前
12秒前
研友_LpQGjn完成签到 ,获得积分10
12秒前
12秒前
静默发布了新的文献求助10
13秒前
Ran完成签到 ,获得积分10
13秒前
结实星星发布了新的文献求助10
14秒前
遇上就这样吧应助圈圈采纳,获得50
15秒前
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5610111
求助须知:如何正确求助?哪些是违规求助? 4694594
关于积分的说明 14883542
捐赠科研通 4721206
什么是DOI,文献DOI怎么找? 2544999
邀请新用户注册赠送积分活动 1509911
关于科研通互助平台的介绍 1473039